精英家教网 > 高中数学 > 题目详情
在有穷数列{an}中,Sn是{an}的前n项和,若把
S1+S2+S3+…+Sn
n
称为数列{an}的“优化和”,现有一个共2009项的数列
{an}:a1,a2,a3,…,a2009,若其“优化和”为2010,则有2010项的数列1,a1,a2,a3,…,a2009的“优化和”为(  )
分析:首先根据定义得出S1+S2+S3+…+S2009=2009×2010,然后根据S1=a1,S2=a1+a2,…S2009=a1+a2+a3+…a2009,把要求的和转化为前一个和,即可求出结果.
解答:解:∵
S1+S2+S3+…+S2009
2009
=2010
∴S1+S2+S3+…+S2009=2009×2010,
其中S1=a1,S2=a1+a2,…S2009=a1+a2+a3+…a2009
∴所求的优化和=[1+(1+a1)+(1+a1+a2)+…+(1+a1+…+a2008)+(1+a1+…+a2009)]÷2010
=[1+( 1+S1)+(1+S2)+…+(1+S2008)+(1+S2009)]÷2010
=[2010×1+(S1+S2+…+S2009)]÷2010
=[2010+2009×2010]÷2010
=1+2009=2010
故选C.
点评:本题考差了数列的求和,解题的关键是正确理解新定义,得出
S1+S2+S3+…+S2009
2009
=2010
是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知有穷数列A:a1,a2,…,an(n≥2,n∈N).定义如下操作过程T:从A中任取两项ai,aj,将
ai+aj
1+aiaj
的值添在A的最后,然后删除ai,aj,这样得到一系列n-1项的新数列A1 (约定:一个数也视作数列);对A1的所有可能结果重复操作过程T又得到一系列n-2项的新数列A2,如此经过k次操作后得到的新数列记作Ak.设A:-
5
7
3
4
1
2
1
3
,则A3的可能结果是(  )
A、0
B、
3
4
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有穷数列A:a1,a2,…,an,(n≥2).若数列A中各项都是集合{x|-1<x<1}的元素,则称该数列为数列.对于数列A,定义如下操作过程T:从A中任取两项ai,aj,将
ai+aj
1+aiaj
的值添在A的最后,然后删除ai,aj,这样得到一个n-1项的新数列A1(约定:一个数也视作数列).若A1还是数列,可继续实施操作过程T,得到的新数列记作A2,…,如此经过k次操作后得到的新数列记作Ak
(Ⅰ)设A:0,
1
2
1
3
…请写出A1的所有可能的结果;
(Ⅱ)求证:对于一个n项的数列A操作T总可以进行n-1次;
(Ⅲ)设A:-
5
7
,-
1
6
,-
1
5
,-
1
4
5
6
1
2
1
3
1
4
1
5
1
6
…求A9的可能结果,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m>3,对于有穷数列{an}(n=1,2,3…,m),令bk为a1,a2…ak中的最大值,称数列{bn}为{an}的“创新数列”.数{bn}中不相等项的个数称为{an}的“创新阶数”.例如数列2,1,3,7,5的创新数列为2,2,3,7,7,创新阶数为3.
考察自然数1,2…m(m>3)的所有排列,将每种排列都视为一个有穷数列{cn}.
(Ⅰ)若m=5,写出创新数列为3,4,4,5,5的所有数列{cn};
(Ⅱ) 是否存在数列{cn},使它的创新数列为等差数列?若存在,求出所有的数列{cn},若不存在,请说明理由;
(Ⅲ)在创新阶数为2的所有数列{cn}中,求它们的首项的和.

查看答案和解析>>

科目:高中数学 来源:2009年北京市西城区高考数学一模试卷(理科)(解析版) 题型:解答题

设m>3,对于有穷数列{an}(n=1,2,3…,m),令bk为a1,a2…ak中的最大值,称数列{bn}为{an}的“创新数列”.数{bn}中不相等项的个数称为{an}的“创新阶数”.例如数列2,1,3,7,5的创新数列为2,2,3,7,7,创新阶数为3.
考察自然数1,2…m(m>3)的所有排列,将每种排列都视为一个有穷数列{cn}.
(Ⅰ)若m=5,写出创新数列为3,4,4,5,5的所有数列{cn};
(Ⅱ) 是否存在数列{cn},使它的创新数列为等差数列?若存在,求出所有的数列{cn},若不存在,请说明理由;
(Ⅲ)在创新阶数为2的所有数列{cn}中,求它们的首项的和.

查看答案和解析>>

同步练习册答案