精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)=x2(ax-3),若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0处取得最大值,则正数a的范围
 
分析:先对函数f(x)进行求导表示出函数g(x),然后对函数g(x)求导,令导函数等于0求出x,确定极值点,最后求出端点值和极点值比较大小即可得到答案.
解答:解:∵f(x)=x2(ax-3)=ax3-3x2,∴f'(x)=3ax2-6x,
∴g(x)=f(x)+f′(x)=ax3+(3a-3)x2-6x
∴g'(x)=f'(x)=3ax2+6(a-1)x-6,
令g'(x)=0,方程的另个根为x1,2=
1-a±
a2+1
a
,因为a是正数,所以x1x2=
-6
3a
=-
2
a
<0,
1-a-
a2+1
a
<0,
1-a+
a2+1
a
>0
又g(0)=0,g(2)=20a-24,
当0<
1-a+
a2+1
a
≤2时,a≥
3
4
,由于g(x)在区间[0,2]先减后增,
当g(0)=0≥g(2)=20a-24时,a≤
6
5

3
4
≤a≤
6
5

1-a+
a2+1
a
>2即a<
3
4
时,由于g(x)在区间[0,2]减,
显然有g(0)=0>g(2)=20a-24成立,解得a<
6
5

∴a<
3
4

综上所述,0<a≤
6
5

故答案为:0<a≤
6
5
点评:本题主要考查函数的求导运算、函数在闭区间上的最值.导数是由高等数学下放到高中的内容,是高中新增的内容,每年必考,要引起重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案