(本小题满分12分)
已知数列{an}的前n项和为Sn,点
在直线
上.数列{bn}满足
,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设
,数列{cn}的前n和为Tn,求使不等式
对一切
都成立的最大正整数k的值.
(Ⅰ)![]()
(II)![]()
【解析】
试题分析:(Ⅰ)由题意,得![]()
故当
时,![]()
当n = 1时,
,而当n = 1时,n + 5 = 6,所以,
…3分
又
,
所以{bn}为等差数列,于是![]()
而
因此,
…………6分
(Ⅱ)![]()
所以,![]()
…………8分
由于
,
因此Tn单调递增,故
………………10分
令
………………12分
考点:数列通项公式的求法;数列前n项和的求法。
点评:(1)我们要熟练掌握求数列通项公式的方法。公式法是求数列通项公式的基本方法之一,常用的公式有:等差数列的通项公式、等比数列的通项公式及公式
。此题的第一问求数列的通项公式就是用公式
,用此公式要注意讨论
的情况。
(2)常见的裂项公式:
,
,
,
,
,![]()
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com