精英家教网 > 高中数学 > 题目详情
已知f(x)=x2+|2x-4|+a.
(1)当a=-3时,求不等式f(x)>x2+|x|的解集;
(2)若不等式f(x)≥0的解集为实数集R,求实数a的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(1)当a=-3时,f(x)=x2+|2x-4|-3,通过对x的取值范围分类讨论,去掉绝对值符号,即可求得不等式f(x)>x2+|x|的解集;
(2)f(x)≥0的解集为实数集R?a≥-x2-|2x-4|,通过对x的取值范围分类讨论,去掉绝对值符号,可求得-x2-|2x-4|的最大值为-3,从而可得实数a的取值范围.
解答: 解:(1)当a=-3时,f(x)=x2+|2x-4|-3,
当x≤0时,由f(x)>x2+|x|得-x+1>0,得x<1,
∴x≤0.
当0<x≤2时,由f(x)>x2+|x|得-3x+1>0,解得x<
1
3

∴0<x<
1
3

当x>2时,由f(x)>x2+|x|得x-7>0,解得x>7.
∴x>7.
当a=-3时,f(x)>x2+|x|的解集为{x|x<
1
3
或x>7}.
(2)f(x)≥0的解集为实数集R?a≥-x2-|2x-4|,
当x≥2时,-x2-|2x-4|=-x2-2x+4=-(x+1)2+5≤-4,
当x<2时,-x2-|2x-4|=-x2+2x-4=-(x-1)2-3≤-3,
∴-x2-|2x-4|的最大值为-3.
∴实数a的取值范围为[-3,+∞).
点评:本题考查绝对值不等式的解法,着重考查分类讨论思想的应用,去掉绝对值符号是解不等式的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD底面ABCD是矩形PA⊥平面ABCD,AD=2,AB=1,E、F分别是线段AB,BC的中点,
(Ⅰ)在PA上找一点G,使得EG∥平面PFD;.
(Ⅱ)若PB与平面ABCD所成的角为45°,求三棱锥D-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据统计资料,某工艺品厂的日产量最多不超过20件,每日产品废品率P与日产量x(件)之间近似地满足关系式P=
2
15-x
,1≤x≤9,x∈N*
x2+60
540
,10≤x≤20,x∈N*
(日产品废品率=
日废品量
日产量
×100%).已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润Y=日正品赢利额-日废品亏损额)
(1)将该车间日利润y(千元)表示为日产x(件)的函数;
(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρsin2θ=cosθ.
(1)求曲线C的直角坐标方程;
(2)若直线L的参数方程为
x=2-
2
2
t
y=
2
2
t
(t为参数),直线L与曲线C相交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个几何体是由圆柱OO′和三棱锥E-ABC组合而成,点A、B、C在圆O的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,EA⊥平面ABC,AB⊥AC,AB=AC,AE=2

(Ⅰ)求证:AC⊥BD;
(Ⅱ)求O′到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足a1=2,nan+1=Sn+n(n+1).
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设Tn为数列{
an
2n
}的前n项和,求Tn
(Ⅲ)设bn=
1
anan+1an+2
,证明:b1+b2+b3+…+bn
1
32

查看答案和解析>>

科目:高中数学 来源: 题型:

某市文化馆在春节期间举行高中生“蓝天海洋杯”象棋比赛,规则如下:两名选手比赛时,每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为
2
3
,且各局比赛胜负互不影响.
(Ⅰ)求比赛进行4局结束,且乙比甲多得2分的概率;
(Ⅱ)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,M为正方形AA1D1D的中心,N为棱AB的中点.
(1)求证:MN∥面BB1D1D;
(2)求二面角D1-MB1-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为
3
2
,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足
PN
QN
=0,且|
PQ
|=10,求直线l的方程.

查看答案和解析>>

同步练习册答案