精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为
3
2
,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足
PN
QN
=0,且|
PQ
|=10,求直线l的方程.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)由已知条件得
c
a
=2
ab
a2+b2
=
3
2
a2+b2=c2
,由此能求出双曲线方程.
(2)当直线l⊥x轴时,|
PQ
|=6
,不合题意,当直线l的斜率存在时,设直线l的方程为y=k(x-2),由
x2-
y2
3
=1,x>0
y=k(x-2)
,得(3-k2)x2+4k2x-4k2-3=0,由此利用韦达定理、根的判别式结合已知条件能求出直线l的方程.
解答: 解:(1)∵双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,
坐标原点到直线AB的距离为
3
2

c
a
=2
ab
a2+b2
=
3
2
a2+b2=c2
,解得a=1,b=
3
,c=2

∴双曲线方程为x2-
y2
3
=1

(2)当直线l⊥x轴时,|
PQ
|=6
,不合题意,
当直线l的斜率存在时,设直线l的方程为y=k(x-2),
x2-
y2
3
=1,x>0
y=k(x-2)
,消去y得(3-k2)x2+4k2x-4k2-3=0,①
∵直线与双曲线有右支交于不同两点,∴3-k2≠0,
设P(x1,y1),Q(x2,y2),M(x0,y0),
则x1,x2是方程①的两个正根,
x1+x2=
4k2
k2-3
>0
x1x2=
4k2+3
k2-3
=(4k2)2-4(3-k2)(-4k2-3)>0

解得k2>3.②
PN
QN
=0,则PN⊥QN,又M为PQ的中点,|
PQ
|=10,
∴|PM|=|MN|=|MQ|=
1
2
|PQ|=5.又|MN|=x0+2=5,
∴x0=3,而x0=
x1+x2
2
=
2k2
k2-3
=3,∴k2=9,解得k=±3.
∵k=±3满足②式,∴k=±3符合题意. 
∴直线l的方程为y=±3(x-2).
即3x-y-6=0或3x+y-6=0.
点评:本题考查双曲线方程的求法,考查直线方程的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+|2x-4|+a.
(1)当a=-3时,求不等式f(x)>x2+|x|的解集;
(2)若不等式f(x)≥0的解集为实数集R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知F1、F2为椭圆
x2
2
+y2=1的两焦点,M是椭圆上一点,延长F1M到N,P是NF2上一点,且满足
F2N
=2
F2P
MP
F2N
=0,点N的轨迹为E.
(1)求曲线E的方程;
(2)过F1的直线l交椭圆于G,交于曲线E于H,(G、H都在x轴的上方),若
F1H
=2
F1G
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,A1A⊥底面ABC,AC=AB=AA1=4,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求三棱锥C1-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的右焦点为F2(3,0),离心率为e=
3
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)求证:平面AEF⊥平面PAD;
(Ⅱ)H是PD上的动点,EH与平面PAD所成的最大角为45°,求二面角E-AF-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是一个自然数,f(a)是a的各位数字的平方和,定义数列{an}:a1是自然数,an=f(an-1)(n∈N*,n≥2).
(Ⅰ)求f(99),f(2014);
(Ⅱ)若a1≥100,求证:a1>a2
(Ⅲ)当a1<1000时,求证:存在m∈N*,使得a3m=a2m

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,A1A⊥面ABC,∠BAC=90°,E为BC的中点,F为A1A的中点,A1A=4,AB=AC=2.
(Ⅰ)求证AE⊥平面 BCC1
(Ⅱ)求证AE∥平面BFC1
(Ⅲ)在棱AA1上是否存在点P,使得二面角B-PC1-C的大小是45°,若存在,求出AP的长.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的各棱长为2,则D1到面AB1C的距离为
 

查看答案和解析>>

同步练习册答案