精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)求证:平面AEF⊥平面PAD;
(Ⅱ)H是PD上的动点,EH与平面PAD所成的最大角为45°,求二面角E-AF-C的正切值.
考点:平面与平面垂直的判定,与二面角有关的立体几何综合题
专题:空间位置关系与距离
分析:(Ⅰ)设菱形ABCD的边长为2a,由勾股定理推导出AE⊥BC,AE⊥AD.由线面垂直得到PA⊥AE,由此能证明面AEF⊥面PAD.
(Ⅱ)过E作EQ⊥AC,垂足为Q,过作QG⊥AF,垂足为G,连GE,则∠EGQ是二面角E-AF-C的平面角.由此能求出二面角E-AF-C的正切值.
解答: (Ⅰ)证明:设菱形ABCD的边长为2a,
则AE2=(2a)2+a2-2a•2acos60°=3a2,AE=
3
a

BE2+AE2=AB2,∴AE⊥BC,
又AD∥BC,∴AE⊥AD.
∵PA⊥面ABCD,∴PA⊥AE,AE⊥面PAD,
∴面AEF⊥面PAD.
(Ⅱ)解:过E作EQ⊥AC,垂足为Q,过作QG⊥AF,垂足为G,连GE,
∵PA⊥面ABCD,∴PA⊥EQ,EQ⊥面PAC,
∴∠EGQ是二面角E-AF-C的平面角.
过点A作AH⊥PD,连接EH,
∵AE⊥面PAD,∴∠AHE是EH与面PAD所成的最大角.
∵∠AHE=45°,∴AH=AE=
3
a

∵AH•PD=PA•AD,∴2a•PA=
3
a•
PA2+(2a)2
,PA=2
3
a
,PC=4a,
EQ=
3
2
a
,CQ=
1
2
a
,GQ=
3
3
4
a,
∴tan∠EGQ=
EQ
GQ
=
2
3
点评:本题考查面面垂直的证明,考查二面角正切值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足a1=2,nan+1=Sn+n(n+1).
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设Tn为数列{
an
2n
}的前n项和,求Tn
(Ⅲ)设bn=
1
anan+1an+2
,证明:b1+b2+b3+…+bn
1
32

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:AD⊥PC;
(2)求证:平面AEC⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<2x+a≤3},B={x|2x2-3x-2<0}.
(1)当a=1时,求A∪(∁RB);
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为
3
2
,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足
PN
QN
=0,且|
PQ
|=10,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等腰△ABC中,AB=BC=2,∠ACB=120°,△ABC所在平面外一点P到△ABC三顶点的距离相等且为4,求直线PC与平面ABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,BC=
2
,∠ABC=45°,点E在PC上,AE⊥PC.
(Ⅰ)证明:AE⊥平面PCD;
(Ⅱ)当PA=
2
时,求直线AD与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-
1
x
的导数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=x3-6ax在区间(-2,2)上单调递减,则a的取值范围为
 

查看答案和解析>>

同步练习册答案