精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若,则实数的取值范围为__________.

【答案】.

【解析】

作出函数f(x)的图象,设f(a)=f(b)=t,根据否定,转化为关于t的函数,构造函数,求出函数的导数,利用导数研究函数的单调性和取值范围即可.

作出函数f(x)的图象如图:

设f(a)=f(b)=t,

则0<t≤

∵a<b,∴a≤1,b>﹣1,

则f(a)=ea=t,f(b)=2b﹣1=t,

则a=lnt,b=(t+1),

则a﹣2b=lnt﹣t﹣1,

设g(t)=lnt﹣t﹣1,0<t≤

函数的导数g′(t)=﹣1=

则当0<t≤时g′(t)>0,

此时函数g(t)为增函数,

∴g(t)≤g()=ln﹣1=﹣﹣2,

即实数a﹣2b的取值范围为(﹣∞,﹣﹣2],

故答案为:(﹣∞,﹣﹣2].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式anxn+an﹣1xn﹣1+…+a1x+a0 , 当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后进行求值.运行如图所示的程序框图,能求得多项式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,a,b,c分别为∠A,∠B,∠C的对边,且满足(2c﹣b)tanB=btanA.
(1)求A的大小;
(2)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有5名男生、2名女生站成一排照相,

(1)两女生要在两端,有多少种不同的站法?

(2)两名女生不相邻,有多少种不同的站法?

(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB与△PAD都是等边三角形,平面ABCD⊥平面PBD.
(I)证明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右焦点分别为,直线经过椭圆的右焦点与椭圆交于两点,且.

(I)求直线的方程;

(II)已知过右焦点的动直线与椭圆交于不同两点,是否存在轴上一定点,使?(为坐标原点)若存在,求出点的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数y=f(x)的导函数的图象如图所示,给出下列判断:

①函数y=f(x)在区间(-3,-1)内单调递增;②当x=2时,函数y=f(x)有极小值;

③函数y=f(x)在区间内单调递增;④当时,函数y=f(x)有极大值.

则上述判断中正确的是(  )

A. ①② B. ②③ C. ③④ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中抽查100名同学.如果以身高达到165厘米作为达标的标准,对抽取的100名学生进行统计,得到以下列联表:

身高达标

身高不达标

总计

积极参加体育锻炼

40

不积极参加体育锻炼

15

总计

100

(1)完成上表;

(2)能否有犯错率不超过0.05的前提下认为体育锻炼与身高达标有关系?(的观测值精确到0.001).

参考公式:

参考数据:

P(K2≥k)

0.25

0.15

0.10

0.05

0.025

0.010

0.001

k

1.323

2.072

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案