【题目】某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中抽查100名同学.如果以身高达到165厘米作为达标的标准,对抽取的100名学生进行统计,得到以下列联表:
身高达标 | 身高不达标 | 总计 | |
积极参加体育锻炼 | 40 | ||
不积极参加体育锻炼 | 15 | ||
总计 | 100 |
(1)完成上表;
(2)能否有犯错率不超过0.05的前提下认为体育锻炼与身高达标有关系?(的观测值精确到0.001).
参考公式: ,
参考数据:
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)
身高达标 | 身高不达标 | 总计 | |
积极参加体育锻炼 | 40 | 35 | 75 |
不积极参加体育锻炼 | 10 | 15 | 25 |
总计 | 50 | 50 | 100 |
(2) 不能在犯错误的概率不超过0.05的前提下认为体育锻炼与身高达标有关系.
【解析】
(1)由分层抽样的计算方法可求得积极参加锻炼与不积极参加锻炼的人数,填入表格中,
根据表格中的总计及各项值求出其它值即可;
(2)由公式计算出,与参考数据表格中3.841作比较,若小于3.841则不可以,若大于3.841则可以.
(Ⅰ)填写列联表如下:
身高达标 | 身高不达标 | 总计 | |
积极参加体育锻炼 | 40 | 35 | 75 |
不积极参加体育锻炼 | 10 | 15 | 25 |
总计 | 50 | 50 | 100 |
(Ⅱ)K2的观测值为≈1.333<3.841.
所以不能在犯错误的概率不超过0.05的前提下认为体育锻炼与身高达标有关系.
科目:高中数学 来源: 题型:
【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;
(1)将表示为的函数;
(2)若,求总用氧量的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市疾控中心流感监测结果显示,自年月起,该市流感活动一度出现上升趋势,尤其是月以来,呈现快速增长态势,截止目前流感病毒活动度仍处于较高水平,为了预防感冒快速扩散,某校医务室采取积极方式,对感染者进行短暂隔离直到康复.假设某班级已知位同学中有位同学被感染,需要通过化验血液来确定感染的同学,血液化验结果呈阳性即为感染,呈阴性即未被感染.下面是两种化验方法: 方案甲:逐个化验,直到能确定感染同学为止;
方案乙:先任取个同学,将它们的血液混在一起化验,若结果呈阳性则表明感染同学为这位中的位,后再逐个化验,直到能确定感染同学为止;若结果呈阴性则在另外位同学中逐个检测;
(1)求依方案甲所需化验次数等于方案乙所需化验次数的概率;
(2)表示依方案甲所需化验次数,表示依方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑那种化验方案最佳.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】a,b为正数,给出下列命题:
①若a2﹣b2=1,则a﹣b<1;
②若 ﹣ =1,则a﹣b<1;
③ea﹣eb=1,则a﹣b<1;
④若lna﹣lnb=1,则a﹣b<1.
期中真命题的有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论中正确的是( )
①对一切x∈(﹣∞,1)都有f(x)>0;
②存在x∈R+ , 使ax , bx , cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则存在x∈(1,2),使f(x)=0.
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是公比为正数的等比数列,,
(1)求的通项公式;
(2)设是首项为1,公差为2的等差数列,求数列的前项和
【答案】(1)(2)
【解析】
(1)根据等比数列的通项公式得到:,解得二次方程可得到或(舍去),进而得到数列的通项;(2)已知数列的类型是等差数列与等比数列求和的问题,根据等差等比数列求和公式得到结果即可.
解:(1)设为等比数列的公比,则由,得:
即,解得:或(舍去)
所以的通项公式为
(2) 由 等 差 数 列 的 通 项 公 式 得 到:
由 等 差 数 列求 和 公 式 和 等 比 数 列 前 n 项 和 公 式 得 到
【点睛】
这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。
【题型】解答题
【结束】
18
【题目】设a≠b,解关于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com