精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的是(

A.复数z1z2的模相等,则z1z2是共轭复数

B.z1z2都是复数,若z1z2是虚数,则z1不是z2的共轭复数

C.复数z是实数的充要条件是z(z的共轭复数)

D.已知复数z1=-12iz21iz332i(i是虚数单位),它们对应的点分别为ABCO为坐标原点,若(xyR),则xy1

【答案】BC

【解析】

A.根据共轭复数的定义,举例判断;B.根据是虚数,判断两个复数的虚部的关系,判断选项;C.分别判断充分和必要条件;D.利用向量,复数,坐标的关系,利用向量相等求得的值.

A.模相等的复数不一定是共轭复数,比如:,这两个复数的模相等,但不是共轭复数,故A不正确;

B. ,若是虚数,,两个复数的虚部不互为相反数,所以不是的共轭复数,故B正确;

C.,若,则,所以复数是实数,若是实数,则 ,所以C正确;

D.由条件可知,若(xyR)

所以 ,解得:

所以,故D不正确.

故选:BC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据统计,某地区植被覆盖面积公顷与当地气温下降的度数之间呈线性相关关系,对应数据如下:

公顷

20

40

60

80

3

4

4

5

请用最小二乘法求出y关于x的线性回归方程;

根据中所求线性回归方程,如果植被覆盖面积为300公顷,那么下降的气温大约是多少

参考公式:线性回归方程;其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孝感市旅游局为了了解双峰山景点在大众中的熟知度,从年龄在1565岁的人群中随机抽取n人进行问卷调查,把这n人按年龄分成5组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的样本的频率分布直方图如右:

调查问题是“双峰山国家森林公园是几A级旅游景点?”每组中回答正确的人数及回答正确的人数占本组的频率的统计结果如下表.

组号

分组

回答正确的人数

回答正确的人数占本组的频率

1

[15,25)

5

0.5

2

[25,35)

18

x

3

[35,45)

y

0.9

4

[45,55)

9

a

5

[55,65]

7

b

(1)分别求出nxy的值;

(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人;

(3)(2)抽取的6人中随机抽取2人,求所抽取的两人来自不同年龄组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

的单调递减区间;

②当时,直线y=k与y=f (x)的图象有两个不同交点;

③函数y=f(x)的图象与的图象没有公共点;

④当时,函数的最小值为2.

其中正确结论的序号是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若曲线与曲线在它们的某个交点处具有公共切线,求的值;

(Ⅱ)若存在实数使不等式的解集为,求实数的取值范围

(Ⅲ)若方程有三个不同的解,且它们可以构成等差数列,写出实数的值(只需写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P-A BC的四个顶点都在球D的表面上,PA平面ABC,ABBC,PA =3,AB=BC=2,则球O的表面积为

A13π B17π C52π D68π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出09之间取整数值的随机数,指定1234表示命中,567890表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,椭圆的长轴长为8,离心率为

求椭圆方程;

椭圆内接四边形ABCD的对角线交于原点,且,求四边形ABCD周长的最大值与最小值.

查看答案和解析>>

同步练习册答案