精英家教网 > 高中数学 > 题目详情
13.小明去和济小区送快递,该小区共有三个出入口,每个出入口均可进出,则小明进出该小区的方案最多有(  )
A.6种B.8种C.9种D.12种

分析 根据题意,分析可得小明进入小区有3种情况,出小区也有3种情况,由分步计数原理计算可得答案.

解答 解:根据题意,该小区共有三个出入口,每个出入口均可进出,
则进入小区有3种情况,出小区也有3种情况,
则小明进出该小区的方案有3×3=9种方案;
故选:C.

点评 本题考查分步计数原理的应用,注意每个出入口均可进出,不能用排列数公式分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinA=2sinB,c=$\frac{3}{2}$b.
(Ⅰ)求sinA的值;
(Ⅱ)若△ABC的面积为3$\sqrt{15}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设△ABC的内角A,B,C所对应的边长分别是a,b,c,且$cosB=\frac{4}{5},b=3$.
(1)当A=30°时,求a的值;
(2)当△ABC的面积为3时,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.B.在△ABC中,角A,B,C的对边分别为a,b,c,已知(2c-a)cosB=b(cosA-2cosC).
(1)求$\frac{a}{c}$的值;
(2)若$b=2,cosB=\frac{1}{4}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l1的方程是y=$\sqrt{3}$x+2.
(Ⅰ)求直线l1在x轴上的截距;
(Ⅱ)若直线l2过点A(2,-3),并且直线l2的倾斜角是直线l1的倾斜角的2倍,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知(2x-$\frac{1}{\sqrt{x}}$)n展开式的二项式系数之和为64,则其展开式中含x3项的系数为240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=lg(2cosx-1)的定义域为(  )
A.[-$\frac{π}{3}$,$\frac{π}{3}$]B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{3}$],k∈Z
C.(-$\frac{π}{3}$,$\frac{π}{3}$)D.(2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{3}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+3)<0},则A∩B=(  )
A.{-2,-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“x<-2”是“($\frac{1}{2}$)${\;}^{{x}^{2}}$≥$\frac{1}{16}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案