精英家教网 > 高中数学 > 题目详情
2.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+3)<0},则A∩B=(  )
A.{-2,-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}

分析 解一元二次不等式化简集合B,再由交集运算性质计算得答案.

解答 解:∵集合A={-2,-1,0,1,2},B={x|(x-1)(x+3)<0}={x|-3<x<1},
∴A∩B={-2,-1,0,1,2}∩{x|-3<x<1}={-2,-1,0}.
故选:A.

点评 本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设ξ~B(n,p),Eξ=12,Dξ=4,则n的值是(  )
A.17B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.小明去和济小区送快递,该小区共有三个出入口,每个出入口均可进出,则小明进出该小区的方案最多有(  )
A.6种B.8种C.9种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=cosx的图象向右平移$\frac{π}{2}$个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为(  )
A.y=1-sinxB.y=1+sinxC.y=1-cosxD.y=1+cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为60秒.若一名行人来到该路口遇到红灯,则至少需要等待20秒才出现绿灯的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场周年庆,准备提供一笔资金,对消费满一定金额的顾客以参与活动的方式进行奖励,顾客从一个装有大小相同的2个红球和4个黄球的袋中按指定规则取出2个球,根据取到的红球数确定奖励金额,具体金额设置如下表:
取到的红球数 
 奖励(单位:元) 5 1050 
现有两种取球规则的方案:
方案一:一次性随机取出2个球;
方案二:依次有放回取出2个球.
(1)比较两种方案下,一次抽奖获得50元奖金概率的大小;
(2)为使得尽可能多的人参与活动,作为公司负责人,你会选择哪种方案?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中划出下列方程表示的图象
(1)x2+2xy-3y2=0;(2)$\sqrt{{x}^{2}-4}$•$\sqrt{y+2}$=0;(3)|x|+|y|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,A=60°,b,c是方程x2-3x+2=0的两个实根,则边BC上的高为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某货船在O处看灯塔M在北偏东30°方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达B处,看到灯塔M在北偏东75°方向,此时货船到灯塔M的距离为6$\sqrt{2}$海里.

查看答案和解析>>

同步练习册答案