精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3-
92
x2+6x-a

(1)对于任意实数x,f′(x)≥m在(1,5]恒成立(其中f′(x)表示f(x)的导函数),求m的最大值;
(2)若方程f(x)=0在R上有且仅有一个实根,求a的取值范围.
分析:(1)f′(x)≥m在(1,5]恒成立,等价于m≤3x2-9x+6在(1,5]恒成立,等价于m≤(3x2-9x+6)min,根据二次函数的性质即可求得其最小值;
(2)结合图象,方程f(x)=0在R上有且仅有一个实根,等价于函数f(x)只有一个零点,利用导数求出函数f(x)的极大值、极小值,只需令极大值小于0或极小值大于0即可;
解答:解:(1)f′(x)=3x2-9x+6,
f′(x)≥m在(1,5]恒成立,等价于m≤3x2-9x+6在(1,5]恒成立,
由f′(x)=3x2-9x+6=3(x-
3
2
)2-
3
4
在[1,5]上的最小值为-
3
4

所以m≤-
3
4
,即m的最大值为-
3
4

(2)f′(x)=3x2-9x+6=3(x-1)(x-2),
当x<1或x>2时f′(x)>0,当1<x<2时f′(x)<0,
所以函数f(x)在(-∞,1)和(2,+∞)上单调递增,在(1,2)上单调递减,
所以f(x)极大值=f(1)=
5
2
-a,f(x)极小值=f(2)=2-a,
故当f(1)<0或f(2)>0时,方程f(x)=0在R上有且仅有一个实根,解得a>
5
2
或a<2,
所以所求a的取值范围为:(-∞,2)∪(
5
2
,+∞).
点评:本题考查利用导数求函数的最值、函数恒成立及函数的零点,考查转化思想、数形结合思想,考查学生分析解决问题的能力,恒成立问题常转化为函数最值问题解决,而方程根的个数可转化为函数零点解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3-
92
x2+6x-a

(1)对于任意实数x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-(
12
)x-2
,则其零点所在区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-(
1
2
)x-2
,则其零点所在区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-tx+
t-1
2
,t∈R

(I)试讨论函数f(x)在区间[0,1]上的单调性:
(II)求最小的实数h,使得对任意x∈[0,1]及任意实数t,f(x)+|
t-1
2
|+h≥0
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
3
 
-3a
x
2
 
+3bx
的图象与直线12x+y-1=0相切于点(1,-11).
(I)求a,b的值;
(II)如果函数g(x)=f(x)+c有三个不同零点,求c的取值范围.

查看答案和解析>>

同步练习册答案