精英家教网 > 高中数学 > 题目详情

函数f(x)=x3-3x+2.
(1)求f(x)的零点;
(2)求分别满足f(x)<0,f(x)=0,f(x)>0的x的取值范围;
(3)画出f(x)的大致图象.

解:f(x)=x3-3x+2=(x-1)(x2+x-2)=(x-1)2(x+2).
(1)令f(x)=0,
得函数f(x)的零点为x=1或x=-2.
(2)令f(x)<0,
得x<-2;
令f(x)>0,
得-2<x<1或x>1,
综上所述,满足f(x)<0的x的取值范围是(-∞,-2);
满足f(x)=0的x的取值范围是{1,-2};
满足f(x)>0的x的取值范围是(-2,1)∪(1,+∞).
(3)函数f(x)的大致图象如图所示.
分析:(1)令f(x)=0,解出x的值即零点;
(2)由(1)得出f(x)=x3-3x+2=(x-1)2(x+2).令f(x)<0,f(x)=0,f(x)>0,分别解出x的取值范围即可.
(3)根据零点,当f(x)<0,f(x)=0,f(x)>0分别所对应的区间,还有一些特殊点,比如f(-1),f(0)等,然后用平滑的曲线连接起来,就得到f(x)的大致图象.
点评:本题比较简单,主要考查函数零点的求法,以及函数图象的画法,平时多画一些.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案