精英家教网 > 高中数学 > 题目详情
四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的
2
倍,P为侧棱SD上的点.
(Ⅰ)当SP:PD为何值时,直线SD⊥平面PAC,
(Ⅱ)在(1)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC,若存在,求SE:EC的值,若不存在,请说明理由.
考点:直线与平面垂直的判定,直线与平面平行的性质
专题:综合题,空间位置关系与距离
分析:(Ⅰ)根据已知可求得∠DPO=90°,由正方形边长2,则SD=2
2
,又OD=
2
,可求∠SDO=60°,由cos∠SDO=
PD
OD
,可解得PD的值,从而可求SP:PD的比值.
(Ⅱ)取SD中点为N,因为PD:SP=1:3,则PN=PD,过N作PC的平行线与SC的交点即为E.在△BDN中知BN∥PO,又由于NE∥PC,即可得到平面BEN∥平面PAC,使得BE∥平面PAC,进而求得SE:EC的值.
解答: 解:(Ⅰ)∵直线SD⊥平面PAC,OP?平面PAC,
∴直线SD⊥OP,故∠DPO=90°.
由正方形边长2,则SD=2
2

又OD=
2
,所以∠SDO=60°,
由cos∠SDO=
PD
OD
,可解得:PD=OD×cos∠SDO=
2
×
1
2
=
2
2

故SP:PD=(2
2
-
2
2
):
2
2
=3:1.
(Ⅱ)在棱SC上存在一点E,使BE∥平面PAC,由(Ⅱ)可得PD=
2
2

故可在SP上取一点N,使PN=PD,
过N作PC的平行线与SC的交点即为E,连结BN,
在△BDN中知BN∥PO,又由于NE∥PC,
故平面BEN∥平面PAC,得BE∥平面PAC,
由于SN:NP=2:1,故SE:EC=2:1.
点评:本题主要考查了立体几何中平面与平面平行的性质以及线段垂直平面的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin2x+2sinxcosx+3cos2x
(Ⅰ)若x∈R,求函数f(x)的最小正周期
(Ⅱ)在△ABC中,a,b,c分别是内角A、B、C的 对边,若bsinA=
3
accosB,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为
3
,则此双曲线的焦距等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
1
2
1
an+1-1
=
1
an-1
-1(n∈N*),则a10=(  )
A、
9
10
B、
10
9
C、
10
11
D、
11
10

查看答案和解析>>

科目:高中数学 来源: 题型:

直线2x+y-6=0与x轴、y轴的交点分别是A、B,则向量
AB
在x轴的正方向上的投影为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,则cos∠DAC=(  )
A、
10
10
B、
3
10
10
C、
5
5
D、
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某几何体的直观图与三视图的侧视图、俯视图.在直观图中,2BN=AE,M是ND的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)在答题纸上的虚线框内画出该几何体的正视图,并标上数据;
(2)求证:EM∥平面ABC;
(3)试问在边BC上是否存在点G,使GN⊥平面NED.若存在,确定点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1-x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,则a1 十a2 十a3十a4十a5的值等于(  )
A、-31B、0C、1D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,满足(1-q)Sn+qan=1,且q(q-1)≠0.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.

查看答案和解析>>

同步练习册答案