已知正三棱柱ABC—A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.
(Ⅰ)求正三棱柱的侧棱长.
(Ⅱ)若M为BC1的中点,试用基底向量、、表示向量;
(Ⅲ)求异面直线AB1与BC所成角的余弦值.
科目:高中数学 来源: 题型:解答题
如图所示,正方形与矩形所在平面互相垂直,,点为的中点.
(1)求证:∥平面;
(2)求证:;
(3)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
点P是曲线x2-y-2ln=0上任意一点,则点P到直线4x+4y+1=0的最短距离是( )
A.(1-ln 2) | B.(1+ln 2) | C. | D.(1+ln 2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧棱PA的长为2,且PA与AB、AD的夹角都等于600,是PC的中点,设.
(1)试用表示出向量;
(2)求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com