精英家教网 > 高中数学 > 题目详情

(本小题14分)
如图2,在四面体中,
(1)设的中点,证明:在上存在一点,使,并计算的值;
(2)求二面角的平面角的余弦值.

解法一:(1)在平面内作,连接.…………1分

 又, 
  ,  。        

的中点,则         …………4分
在等腰中,, 
中,  ……4分
中,,   …5分
                       …………8分
(2)连接
知:.

又由.
,
的中点,
,
,,

为二面角的平面角                …………10分
在等腰中,
中,
中, .           …………12分
                     …………14分

解法二:在平面中,过点,作,取为坐标原点,分别以,所在的直线为轴,<

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=

(1)求||的最小值;
(2)当||达到最小值时,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ) 若点的中点,求证:平面
(II)若点为线段的中点,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 是边长为的正方形,平面与平面所成角为

(I)设是线段上一个动点,试确定点的位置, 使得平面,并证明你的结论 ;
(Ⅱ)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.
(1)求证:E、F、D、B共面;
(2)求点A1到平面的BDEF的距离;
(3)求直线A1D与平面BDEF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中点.
(1)求cos()的值;
(2)求证:A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正三棱柱ABC—A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.

(Ⅰ)求正三棱柱的侧棱长.
(Ⅱ)若M为BC1的中点,试用基底向量表示向量
(Ⅲ)求异面直线AB1与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若直线与直线互相垂直,那么的值等于 (     )

A.1 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

[2014·武汉调研]直线x-2y+1=0关于直线x=1对称的直线方程是(  )

A.x+2y-1=0 B.2x+y-1=0
C.2x+y-3=0D.x+2y-3=0

查看答案和解析>>

同步练习册答案