精英家教网 > 高中数学 > 题目详情

如图所示,正方形与矩形所在平面互相垂直,,点的中点.

(1)求证:∥平面
(2)求证:
(3)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

(1)详见解析;(2) 详见解析;(3).

解析试题分析:(1)利用三角形的中位线定理证明;(2)证明平面,再证;(3)用向量法求解.
试题解析:(1)连结,连结,因为四边形为正方形,所以的中点,又点的中点,在中,有中位线定理有//,而平面平面
所以,//平面.
(2)因为正方形与矩形所在平面互相垂直,所以
,所以平面,又平面,所以.
(3)存在满足条件的.
依题意,以为坐标原点,分别为轴、轴、轴建立空间直角坐标系,因为,则,,,所
易知为平面的法向量,设,所以平面的法向量为,所以,即,所以,取
,又二面角的大小为
所以,解得.
故在线段上是存在点,使二面角的大小为,且.
考点:空间中的平行问题、垂直问题,用向量法求解二面角问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,ABEC=2,AEBE.

(1)求证:平面EAB⊥平面ABCD
(2)求直线AE与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在棱长为1的正方体中,M,N分别是线段和BD上的点,且AM=BN=

(1)求||的最小值;
(2)当||达到最小值时,是否都垂直,如果都垂直给出证明;如果不是都垂直,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面,底面为正方形,分别是的中点.

(1)求证:
(2)在平面内求一点,使平面,并证明你的结论;
(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABCA1B1C1中,ABBCCAAA1=2,侧棱AA1⊥面ABCDE分别是棱A1B1AA1的中点,点F在棱AB上,且

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)求二面角EBC1D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ) 若点的中点,求证:平面
(II)若点为线段的中点,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正三棱柱ABC—A1B1C1,底面边长AB=2,AB1⊥BC1,点O、O1分别是边AC,A1C1的中点,建立如图所示的空间直角坐标系.

(Ⅰ)求正三棱柱的侧棱长.
(Ⅱ)若M为BC1的中点,试用基底向量表示向量
(Ⅲ)求异面直线AB1与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,,点的中点.

(1)求异面直线所成角的余弦值;
(2)求平面与平面所成二面角的正弦值.

查看答案和解析>>

同步练习册答案