精英家教网 > 高中数学 > 题目详情
(2013•许昌二模)在直角梯形ABCD中,AD∥BC,AB=1,AD=
3
,AB⊥BC,CD⊥BD,如图1,把△ABD沿BD翻折,使得平面A'BD⊥平面BCD,如图2.
(Ⅰ)求证:CD⊥A'B;
(Ⅱ)求三棱锥A'-BDC的体积.
分析:(Ⅰ)利用平面A′BD⊥平面BCD,根据面面垂直的性质,可得CD⊥平面A′BD,利用线面垂直的性质,可得CD⊥A′B;
(Ⅱ)作出三棱锥的高,利用三棱锥的体积公式,可求三棱锥A'-BDC的体积.
解答:(Ⅰ)证明:∵平面A′BD⊥平面BCD,平面A′BD∩平面BCD=BD,CD⊥BD,
∴CD⊥平面A′BD,
∵AB?平面A′BD
∴CD⊥A′B;
(Ⅱ)解:如图1,在Rt△ABD中,BD=
AB2+AD2
=2
∵AD∥BC,∴∠ADB=∠DBC=30°
在Rt△BDC中,DC=BDtan30°=
2
3
3

∴S△BDC=
1
2
BD•DC
=
2
3
3

如图2,在Rt△A′BD中,过点A′作A′E⊥BD于E,则A′E⊥平面BCD
A′E=
A′B•A′D
BD
=
3
2

∴VA′-BDC=
1
3
S△BDC•A′E
=
1
3
2
3
3
3
2
=
1
3
点评:本题考查面面垂直、线面垂直的性质,考查三棱锥体积的计算,考查学生分析解决问题的能力,掌握面面垂直、线面垂直的性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌二模)函数f(x)=Asin(ωx+
π
6
)(ω>0)
的图象与x轴的交点的横坐标构成一个公差为
π
2
的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(I)求椭圆C1的方程.
(Ⅱ)过点S(0,-
1
3
)
的动直线l交椭圆C1于A、B两点,试问:在直角坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过定点T?若存在求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)已知变量x,y满足约束条件
x+2y-3≤0
x+3y-3≥0
y-1≤0.
,若目标函数z=ax+y仅在点(3,0)处取到最大值,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)如图,已知PE切圆O于点E,割线PBA交圆O于A,B两点,∠APE的平分线和AE、BE分别交于点C,D
(Ⅰ)求证:CE=DE;
(Ⅱ)求证:
CA
CE
=
PE
PB

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)抛物线y=-4x2的焦点坐标是(  )

查看答案和解析>>

同步练习册答案