精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2x-12x+1

(1)证明:f(x)在R上单调增;
(2)判断f(x)与f(-x)的关系,若对任意的t∈[1,3],不等式f(t2-2kt)+f(2t2-k)>0恒成立,求k的取值范围.
分析:(1)f(x)=1-
2
2x+1
,利用函数单调性的定义即可证明;
(2)由定义可判断f(x)为奇函数,利用函数的奇偶性及单调性可去掉不等式中的符号“f”,从而转化为具体不等式恒成立问题,
进而转化为函数最值问题即可解决.
解答:解:(1)f(x)=1-
2
2x+1

在R上任取x1,x2,且x1<x2
则f(x1)-f(x2)=(1-
2
2x1+1
)-(1-
2
2x2+1

=
2(2x1-2x2)
(2x1+1)(2x2+1)

因为x1<x2,所以0<2x12x2,所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在R上单调递增.
(2)f(-x)=
2-x-1
2-x+1
=
1-2x
1+2x
=-
2x-1
2x+1
=-f(x),
即f(x)=-f(-x),
不等式f(t2-2kt)+f(2t2-k)>0可化为f(2t2-k)>-f(t2-2kt),即f(2t2-k)>f(2kt-t2),
又f(x)在R上单调递增,所以2t2-k>2kt-t2,即3t2-2kt-k>0,
则问题转化为不等式3t2-2kt-k>0在t∈[1,3]上恒成立,也即k<
3t2
2t+1
在t∈[1,3]上恒成立,
令g(t)=
3t2
2t+1
t∈[1,3],则g′(t)=
6t2+6t
(2t+1)2
>0,
所以g(t)在[1,3]上单调递增,g(t)min=g(1)=1,
所以k<1,即k的取值范围是(-∞,1).
点评:本题考查函数的单调性、奇偶性的判断及不等式恒成立问题,对不等式恒成立问题往往转化为函数最值问题加以解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案