分析 设曲线上任一点为(x,y),由题意可得f′(x)=$\sqrt{x}$+$\root{3}{x}$,即有f(x)=∫f′(x)dx=∫($\sqrt{x}$+$\root{3}{x}$)dx,求得原函数,再由曲线经过点(1,2),解方程可得曲线方程.
解答 解:设曲线y=f(x)上任一点为(x,y),
由题意可得f′(x)=$\sqrt{x}$+$\root{3}{x}$,
即有f(x)=∫f′(x)dx=∫($\sqrt{x}$+$\root{3}{x}$)dx
=$\frac{2}{3}$${x}^{\frac{3}{2}}$+$\frac{3}{4}$${x}^{\frac{4}{3}}$+C,
曲线经过点(1,2),可得$\frac{2}{3}$+$\frac{3}{4}$+C=2,
解得C=$\frac{7}{12}$,
即有该曲线方程为:y=$\frac{2}{3}$${x}^{\frac{3}{2}}$+$\frac{3}{4}$${x}^{\frac{4}{3}}$+$\frac{7}{12}$.
点评 本题考查曲线方程的求法,考查导数的几何意义和积分求原函数的方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 5+$\sqrt{10}$ | B. | 5$±\sqrt{10}$ | C. | 13 | D. | 13或1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,1]∪(3,+∞) | B. | (-3,1)∪(2,+∞) | C. | (-1,1)∪(3,+∞) | D. | (-∞,-3)∪(1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com