精英家教网 > 高中数学 > 题目详情
18.已知一曲线上任一点处的切线斜率为$\sqrt{x}$+$\root{3}{x}$,且曲线经过点(1,2),求该曲线的方程.

分析 设曲线上任一点为(x,y),由题意可得f′(x)=$\sqrt{x}$+$\root{3}{x}$,即有f(x)=∫f′(x)dx=∫($\sqrt{x}$+$\root{3}{x}$)dx,求得原函数,再由曲线经过点(1,2),解方程可得曲线方程.

解答 解:设曲线y=f(x)上任一点为(x,y),
由题意可得f′(x)=$\sqrt{x}$+$\root{3}{x}$,
即有f(x)=∫f′(x)dx=∫($\sqrt{x}$+$\root{3}{x}$)dx
=$\frac{2}{3}$${x}^{\frac{3}{2}}$+$\frac{3}{4}$${x}^{\frac{4}{3}}$+C,
曲线经过点(1,2),可得$\frac{2}{3}$+$\frac{3}{4}$+C=2,
解得C=$\frac{7}{12}$,
即有该曲线方程为:y=$\frac{2}{3}$${x}^{\frac{3}{2}}$+$\frac{3}{4}$${x}^{\frac{4}{3}}$+$\frac{7}{12}$.

点评 本题考查曲线方程的求法,考查导数的几何意义和积分求原函数的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设双曲线$\frac{{x}^{2}}{9}$-y2=1的两焦点是F1,F2,A为双曲线的一点,且|AF1|=7,则|AF2|的值是(  )
A.5+$\sqrt{10}$B.5$±\sqrt{10}$C.13D.13或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos(-40°)cos20°-sin(-40°)•sin(-20°)等于.
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,则不等式f(x)≥f(1)的解集是(  )
A.[-3,1]∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinα=$\frac{1}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)和cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1的右焦点且倾斜角为$\frac{π}{3}$的直线被椭圆C截得的弦长为$\frac{4\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若双曲线的顶点为椭圆x2+$\frac{y^2}{2}$=1长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是$\frac{y^2}{2}-\frac{x^2}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,不是偶函数的是(  )
A.f(x)=x3B.f(x)=x2+1C.$f(x)=\frac{1}{x^2}$D.f(x)=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函数,则a+b=3.

查看答案和解析>>

同步练习册答案