精英家教网 > 高中数学 > 题目详情
某中学采取分层抽样的方法从应届高三学生中按照性别抽取20名学生,其中8名女生中有3名报考理科,男生中有2名报考文科.
(1)是根据以上信息,写出2×2列联表;
(2)用假设检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?
参考公式K2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)

P(K2≥k0 0.10 0.05 0.025 0.010 0.001
k0 2.706 3.841 5.024 6.635 10.828
考点:线性回归方程
专题:计算题,概率与统计
分析:(1)根据抽取20名学生,其中8名女生中有3名报考理科,男生中有2名报考文科,即可得到列联表;
(2)根据所给的表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,得到有95%以上的把握认为学生选报文理科与性别有关.
解答: 解:(1)2×2列联表
男生 女生 总计
报考理科 10 3 13
报考文科 2 5 7
总计 12 8 20
(2)假设H0:报考文理科与性别无关.
则K2的估计值K2=
20×(10×5-2×3)2
12×8×13×7
≈4.432.
因为p(K2>3.84)=0.05,
所以我们有95%把握认为该中学的高三学生选报文理科与性别有关.
点评:本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m,n∈R则“m>0且n>0”是“曲线
x2
m
+
y2
n
=1为椭圆”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是射线y=2(x>1)上一点.过P作直线MN,交抛物线y2=4x于M,N两点,使点P平分线段MN.
(Ⅰ)求直线MN的斜率;
(Ⅱ)直线l:y=x+m与抛物线y2=4x无公共点,若存在一个正方形ABCD,使点A,B在直线l上,点C,D在抛物线y2=4x上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A,B,C为△ABC的三个内角,则
4
A
+
1
B+C
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求使得(3x+
1
x
x
n(n∈N*)的展开式中含有常数项的最小的n为?
(2)对于(1)中求得的n,从3名骨科,4名脑外科和5名内科医生中选派n人组成一个抗震救灾医疗小组,求骨科,脑外科和内科医生都至少有1人的选派方法种数?(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,满足(c-2a)cosB+bcosC=0.
(1)求角B的大小;
(2)若a=2,cosA=
1
7
,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosxcos(x-θ)-
1
2
cosθ(0<θ<π),且当x=
π
3
时f(x)取得最大值.
(1)求θ的值;
(2)当x∈[
π
6
,a]时f(x)的值域为[
1
4
1
2
],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=-x2+2|x-a|.
(1)若f(x)为偶函数,求a的值;
(2)若a=
1
2
,求函数y=f(x)的单调递增区间;
(3)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A、B、C的对边,且c2+ab=a2+b2,则角C的大小为
 

查看答案和解析>>

同步练习册答案