精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且有f(c)=0,当0<x<c时,恒有f(x)>0.
(1)(文)当a=1,时,求出不等式f(x)<0的解;
(2)(理)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若f(0)=1,且f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,求实数m的取值范围.
【答案】分析:(1)当a=1,时,,f(x)的图象与x轴有两个不同交点,利用根与系数的关系求出函数的两个零点,结合图象即可得出 f(x)<0的解;(2)f(x)的图象与x轴有两个交点,由题意得出函数f(x)的零点,结合图解法求得f(x)<0的解即可;
(3)由于f(x)的图象与x轴有两个交点,结合图象表示出三交点为顶点的三角形的面积表达式,从而得到a关于c的表达式,最后利用基本不等式求a的取值范围;
(4)要使f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,必须f(x)max=1≤m2-2km+1成立,令g(k)=-2km+m2,下面问题转化为恒成立问题解决,利用二次函数的图象与性质解得实数m的取值范围.
解答:解:(1)文:当a=1,时,,f(x)的图象与x轴有两个不同交点,
,设另一个根为x2,则,∴x2=1,(2分)
则 f(x)<0的解为  .(4分)
(2)理:f(x)的图象与x轴有两个交点,∵f(c)=0,
设另一个根为x2,则(2分)
又当0<x<c时,恒有f(x)>0,则,则f(x)<0的解为(4分)
(3)f(x)的图象与x轴有两个交点,∵f(c)=0,
设另一个根为x2,则
又当0<x<c时,恒有f(x)>0,则,则三交点为(6分)
这三交点为顶点的三角形的面积为,(7分)
.(10分)
(4)当0<x<c时,恒有f(x)>0,则
∴f(x)在[0,c]上是单调递减的,且在x=0处取到最大值1,(12分)
要使f(x)≤m2-2km+1,对所有x∈[0,c],k∈[-1,1]恒成立,必须f(x)max=1≤m2-2km+1成立,(14分)
必m2-2km≥0,令g(k)=-2km+m2
对所有k∈[-1,1],g(k)≥0恒成立,只要,即(16分)
解得实数m的取值范围为  m≤-2或m=0或m≥2.(18分)
或者按m<0,m=0,m>0分类讨论,每一类讨论正确得(2分),结论(2分).
点评:本小题主要考查函数单调性的应用、一元二次不等式与一元二次方程、不等式的解法、函数恒成立问题等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案