分析 (1)根据数列递推公式可得$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=1$,即可得到{$\frac{1}{{a}_{n}}$}是以2为首项1为公差的等差数列,问题得以解决,
(2)根据错位相减法即可求出数列{bn}的前n项和Sn.
(3)利用数学归纳法即可证明.
解答 解:(1)数列{an}各项不为0,${a_1}=\frac{1}{2}$,$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=1$,
∴$\frac{1}{{a}_{1}}$=2,
∴{$\frac{1}{{a}_{n}}$}是以2为首项1为公差的等差数列,
∴$\frac{1}{{a}_{n}}$=2+n-1=n+1
∴${a_n}=\frac{1}{n+1}$,
(2)${b_n}=n{a_{{2^n}-1}}=\frac{n}{2^n}$,
∴${S_n}=1•\frac{1}{2}+2•\frac{1}{2^2}+3•\frac{1}{2^3}+…+n•\frac{1}{2^n}$,
∴$\frac{1}{2}{S_n}=1•\frac{1}{2^2}+2•\frac{1}{2^3}+3•\frac{1}{2^4}+…+n•\frac{1}{{{2^{n+1}}}}$,
∴$\frac{1}{2}{S_n}=\frac{1}{{{2^{\;}}}}+\frac{1}{2^2}+\frac{1}{2^3}+…+\frac{1}{2^n}-n\frac{1}{{{2^{n+1}}}}=1-\frac{n+4}{{{2^{n+1}}}}$,
∴${S_n}=2-\frac{n+4}{2^n}$
(3)①当n=2时,左=$\frac{1}{2}$>0=右,
∴不等式成立.
②假设当n=k(k≥2,k∈N*)时,不等式成立.
即$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2k-1}$>$\frac{k-2}{2}$成立.
那么n=k+1时,$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2k-1}$+$\frac{1}{2k-1+1}$+…+$\frac{1}{2k-1+2k-1}$
>$\frac{k-2}{2}$+$\frac{1}{2k-1+1}$+…+$\frac{1}{2k}$>$\frac{k-2}{2}$+$\frac{1}{2k}$+$\frac{1}{2k}$+…+$\frac{1}{2k}$=$\frac{k-2}{2}$+$\frac{2k-1}{2k}$=$\frac{(k+1)-2}{2}$,
∴当n=k+1时,不等式成立.据①②可知,不等式对一切n∈N*且n≥2时成立.
点评 本题考查用数列的递推公式和错位相减法以及数学归纳法证明等式,证明n=k+1时等式成立,是解题的难点和关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,3] | B. | [-1,1] | C. | (-1,1) | D. | [1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com