精英家教网 > 高中数学 > 题目详情
8.函数$f(x)=\frac{1}{x^2}$的单调递增区间为(  )
A.(-∞,0]B.[0,+∞)C.(0,+∞)D.(-∞,0)

分析 根据函数单调性的性质进行求解即可.

解答 解:函数的定义域为(-∞,0)∪(0,+∞),
当x>0时,x2为增函数,而$f(x)=\frac{1}{x^2}$为减函数,
当x<0时,x2为减函数,而$f(x)=\frac{1}{x^2}$为增函数,故函数的单调递增区间为(-∞,0),
故选:D.

点评 本题主要考查函数单调区间的求解,根据函数单调性的性质进行判断是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=20x焦点F恰好是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,且双曲线过点(4,3),则该双曲线的渐近线方程为y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an},对于任意的正整数n,${a_n}=\left\{\begin{array}{l}1\;,\;(1≤n≤2016)\\-2•{(\frac{1}{3})^{n-2016}}.\;(n≥2017)\end{array}\right.$,设Sn表示数列{an}的前n项和.下列关于$\underset{lim}{n→∞}$Sn的结论,正确的是(  )
A.$\lim_{n→+∞}{S_n}=-1$
B.$\lim_{n→+∞}{S_n}=2015$
C.$\lim_{n→+∞}{S_n}=\left\{\begin{array}{l}2016,(1≤n≤2016)\\-1.(n≥2017)\end{array}\right.$(n∈N*)
D.以上结论都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.要得到$y=3cos(2x-\frac{π}{3})$的图象,只需将y=3cos2x的图象(  )
A.右移$\frac{π}{3}$B.左移$\frac{π}{3}$C.右移$\frac{π}{6}$D.左移$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\frac{1}{{\sqrt{2-x}}}+ln(x+1)$的定义域为(  )
A.(-1,2]B.(-1,2)C.(2,+∞)D.(-1,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若关于x的不等式4x-logax<0在区间(0,$\frac{1}{2}$]上恒成立,则实数a的取值范围是($\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}各项不为0,a1=$\frac{1}{2}$,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,
(1)求{an}的通项an
(2)若bn=na${\;}_{{2}^{n}-1}$,求数列{bn}的前n项和Sn
(3)用数学归纳法证明:a1+a2+a3+…+a${\;}_{{2}^{n-1}}$>$\frac{n-2}{2}$(n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=f(x+1)的定义域为[1,3],则f(x2)的定义域为[-2,-$\sqrt{2}$]∪[$\sqrt{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是$\frac{7}{8}$.

查看答案和解析>>

同步练习册答案