精英家教网 > 高中数学 > 题目详情
19.已知数列{an},对于任意的正整数n,${a_n}=\left\{\begin{array}{l}1\;,\;(1≤n≤2016)\\-2•{(\frac{1}{3})^{n-2016}}.\;(n≥2017)\end{array}\right.$,设Sn表示数列{an}的前n项和.下列关于$\underset{lim}{n→∞}$Sn的结论,正确的是(  )
A.$\lim_{n→+∞}{S_n}=-1$
B.$\lim_{n→+∞}{S_n}=2015$
C.$\lim_{n→+∞}{S_n}=\left\{\begin{array}{l}2016,(1≤n≤2016)\\-1.(n≥2017)\end{array}\right.$(n∈N*)
D.以上结论都不对

分析 推导出Sn=2015-($\frac{1}{3}$)n-2016,由此能求出$\underset{lim}{n→∞}$Sn

解答 解:∵数列{an},对于任意的正整数n,
${a_n}=\left\{\begin{array}{l}1\;,\;(1≤n≤2016)\\-2•{(\frac{1}{3})^{n-2016}}.\;(n≥2017)\end{array}\right.$,设Sn表示数列{an}的前n项和.
∴a1=a2=a3=…=a2016=1,
${a}_{2017}=-\frac{2}{3}$,${a}_{2018}=-\frac{2}{9}$,${a}_{2019}=-\frac{2}{27}$,…,
∴Sn=2016+$\frac{-\frac{2}{3}[1-(\frac{1}{3})^{n-2016}]}{1-\frac{1}{3}}$=2016-1+($\frac{1}{3}$)n-2016=2015+($\frac{1}{3}$)n-2016
$\underset{lim}{n→∞}$Sn[2015+($\frac{1}{3}$)n-2016]=2015.
故选:B.

点评 本题考查数列的极限的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.定义$[\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{b}_{1}}&{{b}_{2}}\end{array}]$=a1b2-a2b1,f(x)=$[\begin{array}{l}{\sqrt{3}sinxcosx+co{s}^{2}x}&{\sqrt{3}}\\{cos(\frac{3}{2}π+2x)}&{1}\end{array}]$,则f(x)(  )
A.有最大值1B.图象关于直线x=-$\frac{π}{6}$对称
C.在区间(-$\frac{π}{6}$,0)上单调递增D.周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=xα,α∈Q,若f′(-1)=-4,则α=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.椭圆$\frac{x^2}{12}+\frac{y^2}{9}=1$,点$A({0,\frac{1}{2}})$,点P为椭圆上一动点,则|PA|的最大值为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若关于x的不等式x2+$\frac{1}{2}$x≥($\frac{1}{2}$)n,当x∈(-∞,λ]时对任意n∈N*恒成立,则实数λ的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)满足f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若关于x的方程f(x)=x+m有区间(-1,2)上有唯一实数根,求实数的取值范围(注:相等的实数根算一个).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin (2x+$\frac{π}{6}$).
(1)求函数f(x)的最小正周期及其单调减区间;
(2)用“五点法”画出函数g(x)=f(x),x∈[-$\frac{7π}{12}$,$\frac{5π}{12}$]的图象(完成列表格并作图),由图象研究并写出g(x)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=\frac{1}{x^2}$的单调递增区间为(  )
A.(-∞,0]B.[0,+∞)C.(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若扇形的圆心角为2弧度,它所对的弧长为4,则这个扇形的面积为4.

查看答案和解析>>

同步练习册答案