| A. | 有最大值1 | B. | 图象关于直线x=-$\frac{π}{6}$对称 | ||
| C. | 在区间(-$\frac{π}{6}$,0)上单调递增 | D. | 周期为π的偶函数 |
分析 利用三角恒等变换化简函数的解析式,再利用正弦函数的性质,得出结论.
解答 解:f(x)=$[\begin{array}{l}{\sqrt{3}sinxcosx+co{s}^{2}x}&{\sqrt{3}}\\{cos(\frac{3}{2}π+2x)}&{1}\end{array}]$=$\sqrt{3}$sinxcosx+cos2x-$\sqrt{3}$cos($\frac{3π}{2}$+2x)
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1+cos2x}{2}$-$\sqrt{3}$sin2x
=-$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$=-sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
故函数的最大值为1+$\frac{1}{2}$=$\frac{3}{2}$,故排除A;
当x=-$\frac{π}{6}$时,f(x)=1+$\frac{1}{2}$=$\frac{3}{2}$,是函数的最大值,故B正确;
在区间(-$\frac{π}{6}$,0)上,2x-$\frac{π}{6}$∈(-$\frac{π}{2}$,0),f(x)=-$\frac{\sqrt{3}}{2}$sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$ 单调递减,故排除C;
函数f(x)的周期为$\frac{2π}{2}$=π,且函数为非奇非偶函数,故D不正确,
故选:B.
点评 本题主要考查三角恒等变换,正弦函数的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=sin(2x-$\frac{π}{4}$) | B. | f(x)=sin(2x+$\frac{π}{4}$) | C. | f(x)=sin(4x+$\frac{π}{4}$) | D. | f(x)=sin(4x-$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 3 | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\lim_{n→+∞}{S_n}=-1$ | |
| B. | $\lim_{n→+∞}{S_n}=2015$ | |
| C. | $\lim_{n→+∞}{S_n}=\left\{\begin{array}{l}2016,(1≤n≤2016)\\-1.(n≥2017)\end{array}\right.$(n∈N*) | |
| D. | 以上结论都不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com