精英家教网 > 高中数学 > 题目详情
14.若关于x的不等式x2+$\frac{1}{2}$x≥($\frac{1}{2}$)n,当x∈(-∞,λ]时对任意n∈N*恒成立,则实数λ的取值范围是(-∞,-1].

分析 关于x的不等式x2+$\frac{1}{2}$x≥($\frac{1}{2}$)n,当x∈(-∞,λ]时对任意n∈N*恒成立,等价于x2+$\frac{1}{2}$x≥($\frac{1}{2}$)nmax对任意n∈N*在x∈(-∞,λ]恒成立,由此求出λ的取值范围

解答 解:关于x的不等式x2+$\frac{1}{2}$x≥($\frac{1}{2}$)n,当x∈(-∞,λ]时对任意n∈N*恒成立,
等价于x2+$\frac{1}{2}$x≥($\frac{1}{2}$)nmax对任意n∈N*在x∈(-∞,λ]恒成立,
即x2+$\frac{1}{2}$x≥$\frac{1}{2}$对 x∈(-∞,λ]恒成立;
设y=x2+$\frac{1}{2}$x,它的图象是开口向上,对称轴为x=-$\frac{1}{4}$的抛物线,
所以当x≤-$\frac{1}{4}$时,左边是单调减函数,所以要使不等式恒成立,则λ2+$\frac{1}{2}$λ≥$\frac{1}{2}$,
解得λ≤-1,或λ≥$\frac{1}{2}$(舍);
当x>-$\frac{1}{4}$时,左边的最小值就是在x=-$\frac{1}{4}$时取到,
达到最小值时,x2+$\frac{1}{2}$x=-$\frac{1}{16}$,不满足不等式.
因此λ的范围就是 λ≤-1.
故答案为:(-∞,-1].

点评 本题考查了函数恒成立的应用问题,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+blnx和$g(x)=\frac{x-10}{x-4}$的图象在x=5处的切线互相平行.
(1)求b值;
(2)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,最小值为4的是(  )
A.y=log3x+4logx3B.y=ex+4e-x
C.y=sinx+$\frac{4}{sinx}$(0<x<π)D.y=x+$\frac{4}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若复数z对应的点在直线y=2x上,且|z|=$\sqrt{5}$,则复数z=1+2i或-1-2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设某抛物线y2=mx(m>0)的准线与直线x=1的距离为3,则该抛物线的方程为y2=8x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an},对于任意的正整数n,${a_n}=\left\{\begin{array}{l}1\;,\;(1≤n≤2016)\\-2•{(\frac{1}{3})^{n-2016}}.\;(n≥2017)\end{array}\right.$,设Sn表示数列{an}的前n项和.下列关于$\underset{lim}{n→∞}$Sn的结论,正确的是(  )
A.$\lim_{n→+∞}{S_n}=-1$
B.$\lim_{n→+∞}{S_n}=2015$
C.$\lim_{n→+∞}{S_n}=\left\{\begin{array}{l}2016,(1≤n≤2016)\\-1.(n≥2017)\end{array}\right.$(n∈N*)
D.以上结论都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.幂函数$f(x)=({m^2}-m-1){x^{{m^2}+2m-3}}$在(0,+∞)上为减函数,则m的取值是(  )
A.m=2B.m=-1C.m=2或m=-1D.-3≤m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=\frac{1}{{\sqrt{2-x}}}+ln(x+1)$的定义域为(  )
A.(-1,2]B.(-1,2)C.(2,+∞)D.(-1,2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.牛大叔常说“价贵货不假”,他这句话的意思是:“不贵”是“假货”的(  )
A.充分条件B.必要条件
C.充分必要条件D.既非充分也非必要条件

查看答案和解析>>

同步练习册答案