精英家教网 > 高中数学 > 题目详情
若(2-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则|a0|+|a1|+|a2|+|a3|+|a4|+|a5|等于(  )
A、55
B、-1
C、25
D、-25
考点:二项式定理的应用
专题:二项式定理
分析:由题意可得|a0|+|a1|+|a2|+|a3|+|a4|+|a5|即(2+3x)5的展开式的各项系数和,令x=1,可得(2+3x)5的展开式的各项系数和.
解答: 解:由于(2-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则|a0|+|a1|+|a2|+|a3|+|a4|+|a5|即(2+3x)5的展开式的各项系数和,
令x=1,可得(2+3x)5的展开式的各项系数和为55
故选:A.
点评:本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=x2+2x,若f(2-a2)>f(a),则实数α的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域
(1)y=2x+4
1-x

(2)y=6-
-x2-6x-5

(3)y=
4
x-1
(x<0或2<x<5).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinx+
3
cosx+1.
(1)求函数f(x)在[0,
π
2
]的最大值与最小值;
(2)若实数a,b,c使得af(x)+bf(x-c)=1对任意x∈R恒成立,求
bcosc
a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
)
,设函数f(x)=
m
n

(Ⅰ)求f(x)在区间[0,π]上的零点;
(Ⅱ)在△ABC中,角A、B、C的对边分别是a,b,c,且满足b2=ac,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-
a
x
a-1
在[2,+∞)上单调递增,则实数a的取值范围是(  )
A、a<0或a>1
B、(0,1)
C、a<0或1<a≤4
D、0<a<1或1<a≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

对于以下说法:
(1)命题“已知x,y∈R”,若x≠2或y≠3,则“x+y≠5”是真命题;
(2)设f(x)的导函数为f′(x),若f′(x0)=0,则x0是函数f(x)的极值点;
(3)对于函数f(x),g(x),f(x)≥g(x)恒成立的一个充分不必要的条件是f(x)min≥g(x)max
(4)若定义域为R的函数y=f(x),满足f(x)+f(4-x)=2,则其图象关于点(2,1)对称.
其中正确的说法序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,an是Sn和1的等差中项,等差数列{bn}满足b1+S4=0,b9=a1
(1)求数列{an},{bn}的通项公式;
(2)若cn=
1
(bn+16)(bn+18)
,求数列{cn}的前n项和Wn

查看答案和解析>>

科目:高中数学 来源: 题型:

给出四个命题:
(1)若sin2A=sin2B,则△ABC为等腰三角形;
(2)若sinA=cosB,则△ABC为直角三角形;
(3)若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC为正三角形.
以上正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案