精英家教网 > 高中数学 > 题目详情

设函数,其中

(Ⅰ)当时,讨论函数的单调性;

(Ⅱ)若函数仅在处有极值,求的取值范围;

(Ⅲ)若对于任意的,不等式上恒成立,求的取值范围.

解:(Ⅰ)

时,

,解得

变化时,的变化情况如下表:

极小值

极大值

极小值

所以内是增函数,在内是减函数.

(Ⅱ),显然不是方程的根.

为使仅在处有极值,必须恒成立,即有

解此不等式,得.这时,是唯一极值.

因此满足条件的的取值范围是

(Ⅲ)由条件可知,从而恒成立.

时,;当时,

因此函数上的最大值是两者中的较大者.

为使对任意的,不等式上恒成立,当且仅当

    即

上恒成立.

所以,因此满足条件的的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数,其中常数a>1,f(x)=
13
x3-(1+a)x2+4ax+24a
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数ω(其中A>0,ω>0,-π<φ<π )在x=
π
6
处取得最大值2,其图象与轴的相邻两个交点的距离为
π
2

(I)求f(x)的解析式;
(II)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2014届山西省高三第一学期8月月考理科数学试卷(解析版) 题型:解答题

设函数,其中为常数。

(Ⅰ)当时,判断函数在定义域上的单调性;

(Ⅱ)若函数有极值点,求的取值范围及的极值点。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三入学考试理科数学卷 题型:解答题

(本题满分14分)

    设函数,其中

   (Ⅰ)若,求曲线在点处的切线方程;

   (Ⅱ)是否存在负数,使对一切正数都成立?若存在,求出的取值范围;若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2010年广东湛江市高一下学期期末考试数学卷 题型:解答题

(本小题满分12分)

设函数,其中向量,且的图象经过点.(1)求实数的值;

(2)求函数的最小值及此时值的集合.

 

查看答案和解析>>

同步练习册答案