精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ax2+(a-2)x-2,a∈R.
(1)若关于x的不等式f(x)≤0的解集为[-1,2],求实数a的值;
(2)当a<0时,解关于x的不等式f(x)≤0.

分析 (1)问题转化为方程ax2+(a-2)x-2=0有两根且分别为-1,2,得到关于a的方程,解出即可;
(2)问题转化为(x+1)(ax-2)≤0,通过讨论a的范围,求出不等式的解集即可.

解答 解:(1)因为不等式ax2+(a-2)x-2≤0的解集为[-1,2],
所以方程ax2+(a-2)x-2=0有两根且分别为-1,2,
所以△=(a-2)2-4a•(-2)≥0且-1×2=$\frac{-2}{a}$,解得:a=1;
(2)由ax2+(a-2)x-2≤0,得(x+1)(ax-2)≤0,
当-2<a<0时,解集为{x|x≤$\frac{2}{a}$或x≥-1},
当a=-2时,解集为R;  
当a<-2时,解集为{x|x≤-1或x≥$\frac{2}{a}$}.

点评 本题考查了解绝对值不等式问题,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知定义在区间$[{-\frac{π}{4},\frac{π}{4}}]$上的函数f(x)=2asin2x+b的最大值为1,最小值为-5,则实数a+b的值为-$\frac{1}{2}$或-$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且$\overrightarrow m$=(a,b+c),$\overrightarrow n=({1,cosC+\sqrt{3}sinC}),\overrightarrow m∥\overrightarrow n$.
(1)求角A;
(2)若a=3,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=-4x3+kx,对任意的x∈[-1,1],总有f(x)≤1,则实数k的取值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若tanα=-2,tan(α+β)=$\frac{1}{3}$,则tanβ的值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某次问卷调查中,有a,b两题为选做题,规定每位被调查者必须且只需在其中选做一题,其中包括甲乙在内的4名调查者选做a题的概率均为$\frac{2}{3}$,选做b题的概率均为$\frac{1}{3}$.
(1)求甲、乙两位被调查者选做同一道题的概率;
(2)设这4名受访者中选做b题的人数为ξ,求ξ的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等比数列中,已知a3=$\frac{3}{2}$,s3=$\frac{9}{2}$,求q=-$\frac{1}{2}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z=$\frac{2-i}{1+i}$,其中i是虚数单位,则z的模是$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数).现随机抽取20天的指数(见下表),将指数不低于8.5视为当天空气质量优良.
 天数 134 7 810 
 空气质量指数 7.18.3  7.3 9.5 8.6 7.7 8.7 8.88.7  9.1
 天数 1112 13 14 1516 17 18 19 20 
 空气质量指数 7.4 8.5 9.7 8.4 9.6 7.6 9.4 8.9 8.3 9.3
(Ⅰ)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案