精英家教网 > 高中数学 > 题目详情
12.一动圆与定圆F:(x+2)2+y2=1相外切,且与直线l:x=1相切,则动圆圆心轨迹方程为(  )
A.y2=4xB.y2=2xC.y2=-4xD.y2=-8x

分析 设P点坐标为(x,y),A(-2,0),动圆得半径为r,则根据两圆相外切及直线与圆相切得性质可得,PA=1+r,d=r,从而|PA|-d=1,由此能求出动圆圆心轨迹方程.

解答 解:设P点坐标为(x,y),A(-2,0),动圆得半径为r,
则根据两圆相外切及直线与圆相切得性质可得,PA=1+r,d=r
∴|PA|-d=1,即:$\sqrt{(x+2)^{2}+{y}^{2}}$-(1-x)=1,
化简得:y2=-8x.
∴动圆圆心轨迹方程为y2=-8x.
故选:D.

点评 本题考查动圆圆心轨迹方程的求法,考查直线方程、圆、两点间距离公式、两圆相外切、直线与圆相切等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.国内某汽车品牌一个月内被消费者投诉的次数用X表示,据统计,随机变量X的概率分布如下:
 X 0 2
 P 0.10.3  2a
(1)求a的值;
(2)假设一月份与二月份被消费者投诉的次数互不影响,求该汽车品牌在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在极坐标系中,曲线$ρ=3cos({θ-\frac{π}{3}})$上任意两点间的距离的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-x3+3x2+9x+a(a为常数).
(1)求函数f(x)的单调递减区间;
(2)若f(x)在区间[-2,2]上的最大值是20,求f(x)在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=f(x)的定义域为R,f(-2)=3,对任意x∈R,f′(x)>3,则f(x)≥3x+9的解集为(  )
A.[-2,+∞)B.[-2,2]C.(-∞,-2]D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)-xf′(x)<0,若m=$\frac{f(\sqrt{3})}{\sqrt{3}}$,n=$\frac{f(ln\frac{1}{2})}{ln\frac{1}{2}}$,k=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则m,n,k的大小关系是n<m<k(用“<”连接).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,已知AB=2,AC=3,∠A=120°,则△ABC的面积为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若(1+i)+(2-3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于(  )
A.3,2B.3,-2C.3,-3D.-1,4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.P为曲线C1:y=ex上一点,Q为曲线C2:y=lnx上一点,则|PQ|的最小值为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案