精英家教网 > 高中数学 > 题目详情
3.在极坐标系中,曲线$ρ=3cos({θ-\frac{π}{3}})$上任意两点间的距离的最大值为3.

分析 曲线的极坐标方程化为直角坐标方程为:x2+y2-$\frac{3}{2}$x-$\frac{3\sqrt{3}}{2}$y=0,是以r=$\frac{3}{2}$为半径的圆,曲线$ρ=3cos({θ-\frac{π}{3}})$上任意两点间的距离的最大值为2r,由此能求出结果.

解答 解:曲线$ρ=3cos({θ-\frac{π}{3}})$,即$ρ=\frac{3}{2}cosθ+\frac{3\sqrt{3}}{2}sinθ$,
∴${ρ}^{2}=\frac{3}{2}ρcosθ+\frac{3\sqrt{3}}{2}ρsinθ$,
化为直角坐标方程为:x2+y2-$\frac{3}{2}$x-$\frac{3\sqrt{3}}{2}$y=0,
由以r=$\frac{1}{2}\sqrt{\frac{9}{4}+\frac{27}{4}}$=$\frac{3}{2}$为半径的圆,
∴曲线$ρ=3cos({θ-\frac{π}{3}})$上任意两点间的距离的最大值为2r=3.
故答案为:3.

点评 本题考查曲线上任意两点间的距离的最大值的求法,考查极坐标方程、直角坐标方程、的互化、圆的性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn=2an-3n.
(1)求证{an+3}是等比数列
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义域为R的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x),且f(0)=3,则不等式f(x)<3ex的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知关于x的方程log2(x-a)=log2$\sqrt{4-{x}^{2}}$有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线C的极坐标方程ρ=2cos2θ,给定两点P(0,$\frac{π}{2}$),Q(-2,π),则有(  )
A.P在曲线C上,Q不在曲线C上B.P、Q都不在曲线C上
C.P不在曲线C上,Q在曲线C上D.P、Q都在曲线C上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2a•4x-2x-1
(1)当a=1时,求函数f(x)在x∈[-4,0]上的值域;
(2)若关于x的方程f(x)=0有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,为了探求曲线y=x2,x=2与x轴围成的曲边三角形OAP的面积,用随机模拟的方法向矩形OAPB内随机投点1080次,现统计落在曲边三角形OAP的次数360次,则可估算曲边三角形OAP面积为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一动圆与定圆F:(x+2)2+y2=1相外切,且与直线l:x=1相切,则动圆圆心轨迹方程为(  )
A.y2=4xB.y2=2xC.y2=-4xD.y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=|2x-1|+|1-x|
(1)解不等式f(x)≥x+4;
(2)若对任意的x∈R,不等式f(x)≥(m2-3m+3)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案