精英家教网 > 高中数学 > 题目详情
18.已知曲线C的极坐标方程ρ=2cos2θ,给定两点P(0,$\frac{π}{2}$),Q(-2,π),则有(  )
A.P在曲线C上,Q不在曲线C上B.P、Q都不在曲线C上
C.P不在曲线C上,Q在曲线C上D.P、Q都在曲线C上

分析 当$θ=\frac{π}{2}$时,ρ=2cosπ=-2≠0,故点P(0,$\frac{π}{2}$)不在曲线上,当θ=π时,ρ=2cos2π=2≠-2,故点Q(-2,π)不在曲线上.

解答 解:曲线C的极坐标方程ρ=2cos2θ,
当$θ=\frac{π}{2}$时,ρ=2cosπ=-2≠0,故点P(0,$\frac{π}{2}$)不在曲线上,
当θ=π时,ρ=2cos2π=2≠-2,故点Q(-2,π)不在曲线上,
故选:B.

点评 本题考查点是否在极坐标方程上的判断,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在无穷数列{an}中,a1=p是正整数,且满足${a_{n+1}}=\left\{\begin{array}{l}\frac{a_n}{2},当{a_n}为偶数\\{a_n}+5,当{a_n}为奇数.\end{array}\right.$
(Ⅰ)当a3=9时,给出p的值;(结论不要求证明)
(Ⅱ)设p=7,数列{an}的前n项和为Sn,求S150
(Ⅲ)如果存在m∈N*,使得am=1,求出符合条件的p的所有值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.小明在数学课中学习了《解三角形》的内容后,欲测量河对岸的一个铁塔高AB(如图所示),他选择与塔底B在同一水平面内的两个测量点C和D,测得∠BCD=60°,∠BDC=45°,CD=30米,并在点C测得塔顶A的仰角为θ=30°.求:
(1)sin∠DBC;
(2)塔高AB(结果精确到0.01)(参考数据:$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(ωx+φ)(1<ω<3,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{2π}{3}$,0)对称,求函数f(x)=sin(ωx+φ)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}|{{x^2}+2x-3}|,x<2\\-{x^2}-2x+13,\;x≥2\end{array}$,若关于x的方程f(x)-m=0恰有五个不相等的实数解,则m的取值范围是(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在极坐标系中,曲线$ρ=3cos({θ-\frac{π}{3}})$上任意两点间的距离的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比实验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生
(2)成绩优良与班级有关?
(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=f(x)的定义域为R,f(-2)=3,对任意x∈R,f′(x)>3,则f(x)≥3x+9的解集为(  )
A.[-2,+∞)B.[-2,2]C.(-∞,-2]D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是(  )
A.0.2B.0.8C.0.2或0.8D.0.16

查看答案和解析>>

同步练习册答案