10£®Ä³Ð£ÎªÆÀ¹Àн̸ĶԽÌѧµÄÓ°Ï죬ÌôÑ¡ÁËˮƽÏ൱µÄÁ½¸öƽÐÐ°à½øÐжԱÈʵÑ飮¼×°à²ÉÓô´Ð½̷¨£¬ÒÒ°àÈÔ²ÉÓô«Í³½Ì·¨£¬Ò»¶Îʱ¼äºó½øÐÐˮƽ²âÊÔ£¬³É¼¨½á¹ûÈ«²¿ÂäÔÚ[60£¬100]Çø¼äÄÚ£¨Âú·Ö100·Ö£©£¬²¢»æÖÆÆµÂÊ·Ö²¼Ö±·½Í¼Èçͼ£¬Á½¸ö°àÈËÊý¾ùΪ60ÈË£¬³É¼¨80·Ö¼°ÒÔÉÏΪÓÅÁ¼£®

£¨1£©¸ù¾ÝÒÔÉÏÐÅÏ¢ÌîºÃ2¡Á2Áª±í£¬²¢ÅжϳöÓжà´óµÄ°ÑÎÕÈÏΪѧÉú
£¨2£©³É¼¨ÓÅÁ¼Óë°à¼¶Óйأ¿
£¨3£©Ò԰༶·Ö²ã³éÑù£¬³éÈ¡³É¼¨ÓÅÁ¼µÄ5È˲μÓ×ù̸£¬ÏÖ´Ó5ÈËÖÐËæ»úÑ¡3ÈËÀ´×÷ÊéÃæ·¢ÑÔ£¬Çó·¢ÑÔÈËÖÁÉÙÓÐ2ÈËÀ´×Ô¼×°àµÄ¸ÅÂÊ£®£¨ÒÔÏÂÁÙ½çÖµ¼°¹«Ê½½ö¹©²Î¿¼£©
P£¨k2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬n=a+b+c+d£®

·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬¼ÆËã¼×°à¡¢ÒÒ°àÓÅÁ¼ÈËÊý£¬ÌîºÃ2¡Á2Áª±í£»
£¨2£©ÓÉ£¨1£©Öбí¸ñµÄÊý¾Ý¼ÆËãK2£¬¶ÔÕÕÁÙ½çÖµ¼´¿ÉµÃ³ö½áÂÛ£»
£¨3£©¸ù¾Ý·Ö²ã³éÑù·½·¨£¬ÀûÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËãËùÇóµÄ¸ÅÂÊÖµ£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬¼ÆËã¼×°àÓÅÁ¼ÈËÊýΪ60¡Á10¡Á£¨$\frac{2}{60}$+$\frac{1}{60}$£©=30£¬
ÒÒ°àÓÅÁ¼ÈËÊýΪ60¡Á10¡Á£¨$\frac{3}{120}$+$\frac{1}{120}$£©=20£¬
ÌîºÃ2¡Á2Áª±íÈçÏ£º

ÓÅÁ¼²»ÓÅÁ¼×ܼÆ
¼×°à303060
ÒÒ°à204060
×ܼÆ5070120
£¨2£©ÓÉ£¨1£©Öбí¸ñµÄÊý¾ÝÖª£¬¼ÆËãK2=$\frac{120{¡Á£¨30¡Á40-20¡Á30£©}^{2}}{60¡Á60¡Á50¡Á70}$¡Ö3.429£¬
¡ßK2¡Ö3.429¡Ý2.706£¬¡àÓÐ90%µÄ°ÑÎÕÈÏΪѧÉú³É¼¨ÓÅÁ¼Óë°à¼¶Ö®¼äÓйØÏµ£»
£¨3£©¸ù¾Ý·Ö²ã³éÑùÖª¼×°à³éÈ¡3ÈË£¬¼Ç×÷A1£¬A2£¬A3£¬
ÒÒ°à³éÈ¡2ÈË£¬¼Ç×÷B1£¬B2£»
´ÓÖÐÈÎÒâ³éÈ¡3ÈË£¬ÓÐ
A1A2A3£¬A1A2B1£¬A1A2B2£¬A1A3B1£¬
A1A3B2£¬A1B1B2£¬A2A3B1£¬A2A3B2£¬
A2B1B2£¬A3B1B210ÖÖÇéÐΣ¬
ÆäÖÐÖÁÉÙÓÐ2ÈËÀ´×Ô¼×°àµÄÓÐ7ÖÖÇéÐΣ¬
ÔòÖÁÉÙÓÐ2ÈËÀ´×Ô¼×°àµÄ¸ÅÂÊΪP=$\frac{7}{10}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéºÍÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êý$f£¨x£©=a{x^3}-\frac{3}{2}{x^2}+1£¨a£¾0£©$ÔÚÇø¼ä[-$\frac{1}{2}$£¬$\frac{1}{2}$]ÉÏÓÐf£¨x£©£¾0ºã³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨0£¬2]B£®[2£¬+¡Þ£©C£®£¨0£¬5£©D£®£¨2£¬5]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Óü¯ºÏ±íʾÇó½â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ=2cos2¦È£¬¸ø¶¨Á½µãP£¨0£¬$\frac{¦Ð}{2}$£©£¬Q£¨-2£¬¦Ð£©£¬ÔòÓУ¨¡¡¡¡£©
A£®PÔÚÇúÏßCÉÏ£¬Q²»ÔÚÇúÏßCÉÏB£®P¡¢Q¶¼²»ÔÚÇúÏßCÉÏ
C£®P²»ÔÚÇúÏßCÉÏ£¬QÔÚÇúÏßCÉÏD£®P¡¢Q¶¼ÔÚÇúÏßCÉÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=x-aexÓÐÁ½¸öÁãµãx1£¬x2£¬ÇÒx1£¼x2£¬ÔòÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a£¾$\frac{1}{e}$B£®x1-x2Ëæ×ÅaµÄÔö´ó¶ø¼õС
C£®x1x2£¼1D£®x1+x2Ëæ×ÅaµÄÔö´ó¶øÔö´ó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬ÎªÁË̽ÇóÇúÏßy=x2£¬x=2ÓëxÖáΧ³ÉµÄÇú±ßÈý½ÇÐÎOAPµÄÃæ»ý£¬ÓÃËæ»úÄ£ÄâµÄ·½·¨Ïò¾ØÐÎOAPBÄÚËæ»úͶµã1080´Î£¬ÏÖͳ¼ÆÂäÔÚÇú±ßÈý½ÇÐÎOAPµÄ´ÎÊý360´Î£¬Ôò¿É¹ÀËãÇú±ßÈý½ÇÐÎOAPÃæ»ýΪ$\frac{8}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ö±Ïßx+y=0±»Ô²x2+y2=1½ØµÃµÄÏÒ³¤Îª£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®1C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®¶þÏîʽ£¨ax-$\frac{\sqrt{3}}{6}$£©3µÄÕ¹¿ªÊ½µÄµÚ¶þÏîϵÊýΪ-$\frac{\sqrt{3}}{2}$£¬Ôòa2µÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=9x-4•3x+3
£¨1£©Çó·½³Ìf£¨x£©=0µÄ½â£»
£¨2£©µ±x¡Ê[0£¬2]ʱ£¬Çóº¯Êýf£¨x£©µÄ×î´óÖµÓë×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸