精英家教网 > 高中数学 > 题目详情
19.二项式(ax-$\frac{\sqrt{3}}{6}$)3的展开式的第二项系数为-$\frac{\sqrt{3}}{2}$,则a2的值为1.

分析 利用通项公式即可得出.

解答 解:由题意可得:${∁}_{3}^{1}$a2×$(-\frac{\sqrt{3}}{6})$=-$\frac{\sqrt{3}}{2}$,解得a2=1.
故答案为:1.

点评 本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.小明在数学课中学习了《解三角形》的内容后,欲测量河对岸的一个铁塔高AB(如图所示),他选择与塔底B在同一水平面内的两个测量点C和D,测得∠BCD=60°,∠BDC=45°,CD=30米,并在点C测得塔顶A的仰角为θ=30°.求:
(1)sin∠DBC;
(2)塔高AB(结果精确到0.01)(参考数据:$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比实验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生
(2)成绩优良与班级有关?
(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=f(x)的定义域为R,f(-2)=3,对任意x∈R,f′(x)>3,则f(x)≥3x+9的解集为(  )
A.[-2,+∞)B.[-2,2]C.(-∞,-2]D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=2-x-$\frac{4}{x}$(x>0)的值域为(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,已知AB=2,AC=3,∠A=120°,则△ABC的面积为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M$(1,\frac{3}{2})$在椭圆E上.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(-4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是(  )
A.0.2B.0.8C.0.2或0.8D.0.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=log${\;}_{\frac{1}{2}}$5,b=($\frac{1}{3}$)0.2,c=2${\;}^{\frac{1}{3}}$,则(  )
A.a<b<cB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

同步练习册答案