精英家教网 > 高中数学 > 题目详情
11.已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M$(1,\frac{3}{2})$在椭圆E上.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(-4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求k的值.

分析 (Ⅰ)求出抛物线的焦点,可得椭圆的焦点,由椭圆的定义,运用两点的距离公式可得2a=4,即a=2,再由a,b,c的关系,可得b,进而得到椭圆方程;
(Ⅱ)若直线PA,PB关于x轴对称,则kPA+kPB=0,设A(x1,kx1+1),B(x2,kx2+1),运用直线的斜率公式,联立直线方程和椭圆方程,运用韦达定理,化简整理可得k的方程,解方程即可得到k的值.

解答 解:(Ⅰ)因为抛物线焦点为(1,0),所以椭圆的焦点坐标为F2(1,0),F1(-1,0),
又因为M(1,$\frac{3}{2}$)在椭圆上,
 所以2a=|MF1|+|MF2|=$\sqrt{(1+1)^{2}+\frac{9}{4}}$+$\frac{3}{2}$=4,
即a=2,又因为c=1  所以b2=a2-c2=3,
所以椭圆的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)若直线PA,PB关于x轴对称,则kPA+kPB=0,
设A(x1,kx1+1),B(x2,kx2+1),
∴$\frac{{k{x_1}+1}}{{{x_1}+4}}+\frac{{k{x_2}+1}}{{{x_2}+4}}={0^{\;}}即2k{x_1}{x_2}+(4k+1)({x_1}+{x_2})+8=0$,
联立$\left\{{\begin{array}{l}{y=kx+1}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,消去y得到(3+4k2)x2+8kx-8=0,
∴${x_1}+{x_2}=\frac{-8k}{{3+4{k^2}}},{x_1}{x_2}=\frac{-8}{{3+4{k^2}}}$,
∴$\frac{-16k}{{3+4{k^2}}}+(4k+1)\frac{-8k}{{3+4{k^2}}}+8=0$,
即-16k-32k2-8k+24+32k2=0,
∴k=1.

点评 本题考查椭圆的方程的求法,注意运用定义法和基本量的关系,考查直线的斜率的求法,注意运用联立直线方程和椭圆方程,运用韦达定理和直线的斜率公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.用集合表示求解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线x+y=0被圆x2+y2=1截得的弦长为(  )
A.$\sqrt{3}$B.1C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二项式(ax-$\frac{\sqrt{3}}{6}$)3的展开式的第二项系数为-$\frac{\sqrt{3}}{2}$,则a2的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-3x.若方程f(x)+x-t=0恰有两个相异实根,则实数t的所有可能值为{-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.自地面垂直向上发射火箭,火箭的质量为m,试计算将火箭发射到距地面的高度为h时所做的功.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.当函数f(x)=sinx+$\sqrt{3}$cos(π+x)(0≤x<2π)取得最小值时,x=$\frac{11π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=9x-4•3x+3
(1)求方程f(x)=0的解;
(2)当x∈[0,2]时,求函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,x,y∈R,证明:(a2+b2)(x2+y2)≥(ax+by)2,并利用上述结论求(sin2x+cos2x)($\frac{1}{si{n}^{2}x}$+$\frac{4}{co{s}^{2}x}$)的最小值(其中x∈R).

查看答案和解析>>

同步练习册答案