精英家教网 > 高中数学 > 题目详情
6.小明在数学课中学习了《解三角形》的内容后,欲测量河对岸的一个铁塔高AB(如图所示),他选择与塔底B在同一水平面内的两个测量点C和D,测得∠BCD=60°,∠BDC=45°,CD=30米,并在点C测得塔顶A的仰角为θ=30°.求:
(1)sin∠DBC;
(2)塔高AB(结果精确到0.01)(参考数据:$\sqrt{3}$≈1.73)

分析 (1)根据和角公式计算;
(2)在△BCD中利用正弦定理计算BC,再在Rt△ABC中计算AB.

解答 解:(1)由题意可知∠DBC=180°-60°-45°=75°,
∴sin∠DBC=sin75°=sin(45°+30°)=$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{2}}{2}×\frac{1}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.
(2)在△BCD中,由正弦定理得:$\frac{CD}{sin∠CBD}=\frac{BC}{sin∠BDC}$,
即$\frac{30}{\frac{\sqrt{6}+\sqrt{2}}{4}}=\frac{BC}{\frac{\sqrt{2}}{2}}$,解得BC=(30$\sqrt{3}$-30)米.
在Rt△ABC中,∵tanθ=$\frac{AB}{BC}$=$\frac{\sqrt{3}}{3}$,
∴AB=$\frac{\sqrt{3}}{3}$BC=30-10$\sqrt{3}$≈12.7米.

点评 本题考查了正弦定理,解三角形的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,海平面某区域内有A,B,C三座小岛,岛C在A的北偏东70°方向,岛C在B的北偏东40°方向,且A,B两岛间的距离为3海里.
(1)求B,C两岛间的距离;
(2)经测算海平面上一轮船D位于岛C的北偏西50°方向,且与岛C相距3$\sqrt{2}$海里,求轮船在岛A的什么位置.(注:小岛与轮船视为一点)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=a{x^3}-\frac{3}{2}{x^2}+1(a>0)$在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上有f(x)>0恒成立,则a的取值范围为(  )
A.(0,2]B.[2,+∞)C.(0,5)D.(2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,若a=4,b=5,c=6,则cosA=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,若Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n(n≥1),则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和等于(  )
A.$\frac{n}{n+1}$B.$\frac{n-1}{n}$C.$\frac{1}{n}$D.$\frac{1}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义域为R的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x),且f(0)=3,则不等式f(x)<3ex的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用集合表示求解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线C的极坐标方程ρ=2cos2θ,给定两点P(0,$\frac{π}{2}$),Q(-2,π),则有(  )
A.P在曲线C上,Q不在曲线C上B.P、Q都不在曲线C上
C.P不在曲线C上,Q在曲线C上D.P、Q都在曲线C上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二项式(ax-$\frac{\sqrt{3}}{6}$)3的展开式的第二项系数为-$\frac{\sqrt{3}}{2}$,则a2的值为1.

查看答案和解析>>

同步练习册答案