精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}|{{x^2}+2x-3}|,x<2\\-{x^2}-2x+13,\;x≥2\end{array}$,若关于x的方程f(x)-m=0恰有五个不相等的实数解,则m的取值范围是(0,4).

分析 作出f(x)的函数图象,根据函数图象即可得出m的范围.

解答 解:作出f(x)的函数图象如图所示:

由图象可知:当0<m<4时,f(x)=m有5个解;
故答案为:(0,4).

点评 本题考查了方程根与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+bx和g(x)=lnx.
(Ⅰ) 若a=b=1,求证:f(x)的图象在g(x)图象的上方;
(Ⅱ) 若f(x)和g(x)的图象有公共点P,且在点P处的切线相同,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,若Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n(n≥1),则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和等于(  )
A.$\frac{n}{n+1}$B.$\frac{n-1}{n}$C.$\frac{1}{n}$D.$\frac{1}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用集合表示求解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO中点.
(1)若PD∥平面ACE,求证:E为PB的中点;
(2)若AB=$\sqrt{2}$PC,求证:CG⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线C的极坐标方程ρ=2cos2θ,给定两点P(0,$\frac{π}{2}$),Q(-2,π),则有(  )
A.P在曲线C上,Q不在曲线C上B.P、Q都不在曲线C上
C.P不在曲线C上,Q在曲线C上D.P、Q都在曲线C上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x-aex有两个零点x1,x2,且x1<x2,则下列说法中正确的是(  )
A.a>$\frac{1}{e}$B.x1-x2随着a的增大而减小
C.x1x2<1D.x1+x2随着a的增大而增大

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线x+y=0被圆x2+y2=1截得的弦长为(  )
A.$\sqrt{3}$B.1C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.当函数f(x)=sinx+$\sqrt{3}$cos(π+x)(0≤x<2π)取得最小值时,x=$\frac{11π}{6}$.

查看答案和解析>>

同步练习册答案