精英家教网 > 高中数学 > 题目详情

选修4-5:不等式选讲
设函数f(x)=|x-3|+|x-2|+k.
(1)若f(x)≥3恒成立,求k的取值范围;
(2)当k=1时,解不等式:f(x)<3x.

解:(1)|x-3|+|x-2|+k≥3,?x∈R恒成立
即(|x-3|+|x-2|)min≥3-k,
又|x-3|+|x-2|≥|x-3-x+2|=1,
∴(|x-3|+|x-2|)min=1≥3-k,
∴k≥2;…5分
(2)当k=1时,
若x≤2,f(x)<3x?2-x+3-x+1<3x,
∴5x>6,解得x>
<x≤2;
当2<x<3时,同理可得3x>2,解得x>
∴2<x<3
当x≥3时,x>-4,
∴x≥3
综上所述,不等式的解集为(,+∞)…10分.
分析:(1)利用绝对值不等式的几何意义可求得(|x-3|+|x-2|)min=1,从而可求得k的取值范围;
(2)当k=1时,对x分类讨论后去掉绝对值符号,从而可求得每部分的解集,最后取各种情况之并即可.
点评:本题考查绝对值不等式的解法,通过分类讨论去掉绝对值符号是关键,考查分析转化与解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案