精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是
-1≤a≤1
-1≤a≤1
分析:根据分段函数的意义,对f(x)的解析式分段讨论,可得其分段的解析式,结合其奇偶性,可得其函数的图象;进而根据题意中高调函数的定义,可得若f(x)为R上的4高调函数,则对任意x,有f(x+4)≥f(x),结合图象分析可得4≥4a2;解可得答案.
解答:解:根据题意,当x≥0时,f(x)=|x-a2|-a2
则当x≥a2时,f(x)=x-2a2
0≤x≤a2时,f(x)=-x,
由奇函数对称性,有则当x≤-a2时,f(x)=x+2a2
-a2≤x≤0时,f(x)=-x,
图象如图:易得其图象与x轴交点为M(-2a2,0),N(2a2,0)
因此f(x)在[-a2,a2]是减函数,其余区间是增函数.
f(x)为R上的4高调函数,则对任意x,有f(x+4)≥f(x),
故当-2a2≤x≤0时,f(x)≥0,为保证f(x+4)≥f(x),必有f(x+4)≥0;即x+4≥2a2
有-2a2≤x≤0且x+4≥2a2可得4≥4a2
解可得:-1≤a≤1;
故答案为-1≤a≤1.
点评:考查学生的阅读能力,很应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案