精英家教网 > 高中数学 > 题目详情
已知变量x,y满足约束条件
y≤x
2x-y≤8
2x+y≥3
,则目标函数z=6x-2y的最小值为(  )
A、32B、4C、8D、2
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=6x-2y得y=3x-
z
2

平移直线y=3x-
z
2
,由图象可知当直线y=3x-
z
2
经过点A时,
直线y=3x-
z
2
的截距最大,此时z最小,
y=x
2x+y=3
,解得
x=1
y=1

即A(1,1),
此时z=6×1-2×1=4,
故选:B.
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,直线ρ(sinθ-cosθ)=a与曲线ρ=2cosθ-4sinθ相交于A,B两点,若|AB|=2
3
,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x1
x1+1
=
x2
x2+3
=
x3
x3+5
=…
xn
xn+2n-1
,且x1+x2+…x2014=2014,则x1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x、y满足
x-2y+3≥0
3x+2y-7≤0
x+2y-1≥0
,则z=(
1
2
x•4-y的最小值为(  )
A、
1
32
B、
1
16
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x-y≥1
x+y≤4
y≥1
,则目标函数z=2x+4y的最大值是(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

下列三个命题:
①在区间[0,1]内任取两个实数x,y,则事件“x2+y2>1成立”的概率是1-
π
4

②函数f(x)关于(3,0)点对称,满足f(6+x)=f(6-x),且当x∈[0,3]时函数为增函数,则f(x)在[6,9]上为减函数;
③满足A=30°,BC=1,AB=
3
的△ABC有两解.
其中正确命题的个数为(  )
A、1B、2C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下四个命题:
①若“p且q”为假命题,则p、q均为假命题
②命题“若xy=0,则x=0或y=0”的否命题为“若xy≠0,则x≠0且y≠0”
③“任意x∈R,x2+1≥1”的否定是“存在x∈R,x2+1≤1”
④在△ABC中,“A>B”是“sinA>sinB”的充要条件
其中正确的命题的个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

将曲线C1:(x-4)2+y2=4所有点的横坐标不变,纵坐标变为原来的
1
2
得到曲线C2,将曲线C2向左(x轴负方向)平移4个单位,得到曲线C3
(Ⅰ)求曲线C3的方程;
(Ⅱ)垂直于x轴的直线l与曲线C3相交于C、D两点(C、D可以重合),已知A(-2,0),B(2,0),直线AC、BD相交于点P,求P点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别过椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)左、右焦点F1、F2的动直线l1、l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2
3
,|CD|=
4
3
3

(1)求椭圆E的方程;
(2)是否存在定点M,N,使得|PM|+|PN|为定值?若存在,求出M、N点坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案