精英家教网 > 高中数学 > 题目详情
设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f(x)在区间[a,b]上的最大值.
考点:抽象函数及其应用
专题:综合题,函数的性质及应用
分析:由已知中对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,我们可以得到设x=y=0,则f(0)=0,再令y=-x可得f(-x)=-f(x),进而根据函数奇偶性的定义得到结论f(x)为奇函数,再利用函数单调性的定义由x>0时,有f(x)>0,结合对于任意实数x,y都有f(x+y)=f(x)+f(y)成立,判断出函数的单调性,进而求f(x)在区间[a,b]上的最大值.
解答: 解:令x=y=0知f(0)=0,
令x+y=0知f(x)+f(-x)=0,
∴f(x)为奇函数.
任取两个自变量x1,x2且-∞<x1<x2<+∞,
则f(x2)-f(x1)=f(x2-x1),
∵x2>x1,∴x2-x1>0知f(x2-x1)<0,即f(x2)-f(x1)<0,
故f(x2)<f(x1),
∴f(x)在(-∞,+∞)上是减函数,
∴f(x)在区间[a,b]上的最大值为f(a).
点评:本题考查的知识点是抽象函数,函数单调性与性质,是对函数性质及应用的综合考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(Ⅰ) 求异面直线B1C1与AC所成角的大小;
(Ⅱ) 若该直三棱柱ABC-A1B1C1的体积为
2
2
,求点A到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了宣传“低碳生活”,来自五个不同生活小区的5名志愿者利用周末休息时间到这五个小区进行演讲.每个志愿者随机地选择去一个生活小区,且每个生活小区只去一个人.
(1)求甲恰好去自己生活小区宣传的概率;
(2)求甲、乙都没有去自己生活小区宣传的概率;
(3)记五人中恰好去自己生活小区宣传的人数为X,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数y=Asin(ωx+φ)(A,ω>0,|φ|<π)图象的一段.
(1)求其解析式;
(2)若将y=Asin(ωx+φ)的图象向左平移
π
6
个单位长度后得y=f(x),求f(x)的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3道题,每人答对其中2题就停止答题,即为闯关成功.已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是
2
3

(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设乙答对题目的个数为η,求η的方差;
(Ⅲ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
5
5
,tanβ=
1
3
,且α、β∈(0,
π
2
).
(1)求cosα.
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x,y的二元一次方程组为
a2
2-1
x
y
=
e
f

(Ⅰ)若该方程组有唯一解,求实数a的取值范围;
(Ⅱ)若a=2,且该方程组存在非零解
x
y
满足
e
f
x
y
,求λ的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集上的奇函数f(x)恒满足f(1+x)=f(1-x),且x∈(-1,0)时,f(x)=2x+
1
5
,则f(log220)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)是椭圆
x2
16
+
y2
12
=1上的一个动点,F1、F2分别表示该椭圆的左右焦点,则P点到F1F2两点距离之积取值范围为
 

查看答案和解析>>

同步练习册答案