分析 推导出f(x)+f(-x)=$lo{g}_{2}\frac{1-x}{1+x}$=2,由此能求出f($\frac{1}{2016}$)+f(-$\frac{1}{2016}$)的值.
解答 解:∵f(x)=-(x-1)+log2$\frac{1-x}{1+x}$,
∴$f(-x)=-(-x-1)+lo{g}_{2}\frac{1+x}{1-x}$=x+1-$lo{g}_{2}\frac{1-x}{1+x}$,
∴f(x)+f(-x)=-x+1+$lo{g}_{2}\frac{1-x}{1+x}$+x+x-$lo{g}_{2}\frac{1-x}{1+x}$=2,
∴f($\frac{1}{2016}$)+f(-$\frac{1}{2016}$)=2.
故答案为:2.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)=x2(x≥0)存在“和谐区间” | B. | 函数f(x)=2x(x∈R)存在“和谐区间” | ||
| C. | 函数f(x)=$\frac{1}{{x}^{2}}$(x>0)不存在“和谐区间” | D. | 函数f(x)=log2x(x>0)存在“和谐区间” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com