【题目】已知数列{an}满足a1=1,an+1=1﹣
,其中n∈N* .
(Ⅰ)设bn=
,求证:数列{bn}是等差数列,并求出{an}的通项公式an;
(Ⅱ)设Cn=
,数列{CnCn+2}的前n项和为Tn , 是否存在正整数m,使得Tn<
对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.
【答案】证明:(Ⅰ)∵bn+1﹣bn=
= ![]()
=
=2,
∴数列{bn}是公差为2的等差数列,
又
=2,∴bn=2+(n﹣1)×2=2n.
∴2n=
,解得
.
(Ⅱ)解:由(Ⅰ)可得
,
∴cncn+2=
=
,
∴数列{CnCn+2}的前n项和为Tn= ![]()
=2
<3.
要使得Tn<
对于n∈N*恒成立,只要
,即
,
解得m≥3或m≤﹣4,
而m>0,故最小值为3
【解析】(Ⅰ)利用递推公式即可得出bn+1﹣bn为一个常数,从而证明数列{bn}是等差数列,再利用等差数列的通项公式即可得到bn , 进而得到an;(Ⅱ)利用(Ⅰ)的结论,利用“裂项求和”即可得到Tn , 要使得Tn<
对于n∈N*恒成立,只要
,即
,解出即可.
【考点精析】解答此题的关键在于理解数列的通项公式的相关知识,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】若关于x的不等式|3x+2|+|3x﹣1|﹣t≥0的解集为R,记实数t的最大值为a.
(1)求a;
(2)若正实数m,n满足4m+5n=a,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的一个焦点为F(3,0),其左顶点A在圆O:x2+y2=12上.
(1)求椭圆C的方程;
(2)直线l:x=my+3(m≠0)交椭圆C于M,N两点,设点N关于x轴的对称点为N1(点N1与点M不重合),且直线N1M与x轴的交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知椭圆
的离心率为
,C为椭圆上位于第一象限内的一点.![]()
(1)若点
的坐标为
,求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且
,求直线AB的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》之后,人们学会了用数列的知识来解决问题.公元5世纪中国古代内容丰富的数学著作《张丘建算经》卷上有题为:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”.利用这种思想设计的一个程序框图如图,若输出的S值为九匹三丈(一匹=4丈,一丈=10尺),则框图中d为( )![]()
A.
尺![]()
B.
尺
C.
尺
D.
尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于下列四个命题
p1:x0∈(0,+∞),(
)x0<(
)x0
p2:x0∈(0,1),
x0>
x0
p3:x∈(0,+∞),(
)x>
x
p4:x∈(0,
),(
)x<
x.
其中的真命题是( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,
的对称轴为
.
(1)试证明{2nan}是等差数列,并求{an}的通项公式;
(2)设{an}的前n项和为Sn , 求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c=
,△ABC的面积为
,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别是a,b,c,且
acosC=(2b﹣
c)cosA.
(1)求角A的大小;
(2)求cos(
﹣B)﹣2sin2
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com