精英家教网 > 高中数学 > 题目详情
(2012•北京)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若?x∈R,f(x)<0或g(x)<0,则m的取值范围是
(-4,0)
(-4,0)
分析:由于g(x)=2x-2≥0时,x≥1,根据题意有f(x)=m(x-2m)(x+m+3)<0在x>1时成立,根据二次函数的性质可求
解答:解:∵g(x)=2x-2,当x≥1时,g(x)≥0,
又∵?x∈R,f(x)<0或g(x)<0
∴此时f(x)=m(x-2m)(x+m+3)<0在x≥1时恒成立
则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面
m<0
-m-3<1
2m<1

∴-4<m<0
故答案为:(-4,0)
点评:本题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知{an}为等差数列,Sn为其前n项和,若a1=
1
2
,S2=a3,则a2=
1
1
,Sn=
1
4
n(n+1)
1
4
n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;
(2)当a=3,b=-9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知函数f(x)=
(sinx-cosx)sin2xsinx

(1)求f(x)的定义域及最小正周期;
(2)求f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案