分析 由cosC=$\frac{1}{3}$,C∈(0,π),可得sinC=$\sqrt{1-co{s}^{2}C}$,由A+B+C=π,可得sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{1}{3}$sinB+$\frac{2\sqrt{2}}{3}$cosB,又sinA=$\frac{3\sqrt{2}}{2}$cosB.即可得出tanB.
解答 解:∵cosC=$\frac{1}{3}$,C∈(0,π),
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{2}}{3}$,
∵A+B+C=π,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{1}{3}$sinB+$\frac{2\sqrt{2}}{3}$cosB,
又sinA=$\frac{3\sqrt{2}}{2}$cosB.
∴$\frac{3\sqrt{2}}{2}$cosB=$\frac{1}{3}$sinB+$\frac{2\sqrt{2}}{3}$cosB,
∴解得:tanB=$\frac{5\sqrt{2}}{2}$.
故答案为:$\frac{5\sqrt{2}}{2}$.
点评 本题考查了两角和差的正弦函数、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com