精英家教网 > 高中数学 > 题目详情
3.定义在[-3,5]上的函数y=f(x),当x∈[-3,1]时f(x)=x2+2x,且其图象关于直线x=1对称,则当x∈[1,5]时,f(x)=x2-6x+8.

分析 由f(x)的图象关于x=1对称,从而有f(x)=f(2-x),可设x∈[1,5],而2-x∈[-3,1],从而可得出f(x)=f(2-x)=(2-x)2+2(2-x),化简即可得到f(x)的解析式.

解答 解:∵f(x)的图象关于x=1对称;
∴f(x)=f(2-x);
设x∈[1,5],则2-x∈[-3,1];
∴f(x)=f(2-x)=(2-x)2+2(2-x)=x2-6x+8.
故答案为:x2-6x+8.

点评 考查函数解析式的概念,若函数f(x)关于x=a对称,一定有f(x)=f(2a-x),将变量的范围变到已知区间上求函数解析式的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在△ABC中,已知cosC=$\frac{1}{3}$,$\sqrt{2}$sinA=3cosB,则tanB的值等于$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,若存在x1<x2,使得f(x1)=f(x2),则x1的取值范围为[$\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y满足约束条件$\left\{\begin{array}{l}{3x+2y≤11}\\{y≤x+2}\\{x-5y≤3}\end{array}\right.$,目标函数z=3x+5y.
(1)使z取得最小值的最优解是否存在?若存在,请求出;
(2)请你改动约束条件中的一个不等式,使目标函数只有最大值而无最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知两条直线l1:x+(1+m)y=2-m,l2:2mx+4y=-16,若l1∥l2则m=1,若l1⊥l2,m=$-\frac{2}{3}$;若l1,l2相交,则m的范围m≠1且m≠-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题错误的是(  )
①正、余弦定理适用除了直角三角形外的任何三角形;
②$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=2R,其中R是△ABC的内切圆半径;
③在三角形中,边的比等于其所对的角的比;
④在△ABC中,若a>b.则sinA>sinB;
⑤在△ABC中,sin(A+B)=sinC.
A.①②③B.①③④C.D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.点P(x0,y0)在椭圆$\frac{{x}^{2}}{4}$+y2=1上,则x02+4x0+y02的最小值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义在R上的函数f(x)满足f(x+1)=-$\frac{1}{f(x)}$,当x∈[0,1]时,f(x)=x2,则x∈[2,3]时,f(x)=x2-4x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知不等式|2x+2|-|x-1|>a.
(1)当a=0时,求不等式的解集
(2)若不等式在区间[-4,2]内无解.求实数a的取值范围.

查看答案和解析>>

同步练习册答案