精英家教网 > 高中数学 > 题目详情
4.已知tan($\frac{π}{4}$+α)=-2
(Ⅰ)求tanα
(Ⅱ)设β∈(0,π),且满足$\sqrt{3}$sinβcosβ+cos2β=-$\frac{5}{4}$cos2α,求β.

分析 (Ⅰ)由题意利用两角和的正切公式,求得tanα的值.
(Ⅱ)由题意利用同角三角函数的基本关系求得tanβ的值,可得β的值.

解答 解:(Ⅰ)∵已知tan($\frac{π}{4}$+α)=$\frac{1+tanα}{1-tanα}$=-2,∴tanα=3.
(Ⅱ)设β∈(0,π),且满足$\sqrt{3}$sinβcosβ+cos2β=-$\frac{5}{4}$cos2α,
而 $\sqrt{3}$sinβcosβ+cos2β=$\frac{\sqrt{3}sinβcosβ{+cos}^{2}β}{{sin}^{2}β{+cos}^{2}β}$=$\frac{\sqrt{3}tanβ+1}{{tan}^{2}β+1}$,
-$\frac{5}{4}$cos2α=-$\frac{5}{4}$•$\frac{{cos}^{2}α{-sin}^{2}α}{{cos}^{2}α{+sin}^{2}α}$=-$\frac{5}{4}$•$\frac{1{-tan}^{2}α}{1{+tan}^{2}α}$=-$\frac{5}{4}$•$\frac{1-9}{1+9}$=1,
∴$\frac{\sqrt{3}tanβ+1}{{tan}^{2}β+1}$=1,∴tanβ=$\sqrt{3}$,或tanβ=0(舍去),
∴β=$\frac{π}{3}$.

点评 本题主要考查两角和的正切公式,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某商场周年庆,准备提供一笔资金,对消费满一定金额的顾客以参与活动的方式进行奖励,顾客从一个装有大小相同的2个红球和4个黄球的袋中按指定规则取出2个球,根据取到的红球数确定奖励金额,具体金额设置如下表:
取到的红球数 
 奖励(单位:元) 5 1050 
现有两种取球规则的方案:
方案一:一次性随机取出2个球;
方案二:依次有放回取出2个球.
(1)比较两种方案下,一次抽奖获得50元奖金概率的大小;
(2)为使得尽可能多的人参与活动,作为公司负责人,你会选择哪种方案?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,3)
(1)求向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角的余弦值
(2)若k$\overrightarrow{a}$$+\overrightarrow{b}$与2$\overrightarrow{a}$$-\overrightarrow{b}$共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的通项公式为an=an2+n(n∈N*),若满足a1<a2<a3<a4<a5<a6,且an>an+1,对任意n≥10恒成立,则实数a的取值范围是$(-\frac{1}{11},-\frac{1}{21})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某货船在O处看灯塔M在北偏东30°方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达B处,看到灯塔M在北偏东75°方向,此时货船到灯塔M的距离为6$\sqrt{2}$海里.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=2b,3bsinC=c,则sinA等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{9}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.十进制1039(10)转化为8进制为2017(8).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某算法的算法框图如图所示.

(1)求函数y=f(x)的解析式;
(2)求f(f(-$\frac{1}{4}$))的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在极坐标系中,A为直线3ρcosθ+4ρsinθ+13=0上的动点,B为曲线ρ+2cosθ=0上的动点,则|AB|的最小值为(  )
A.1B.2C.$\frac{11}{5}$D.3

查看答案和解析>>

同步练习册答案