分析 (Ⅰ)由题意利用两角和的正切公式,求得tanα的值.
(Ⅱ)由题意利用同角三角函数的基本关系求得tanβ的值,可得β的值.
解答 解:(Ⅰ)∵已知tan($\frac{π}{4}$+α)=$\frac{1+tanα}{1-tanα}$=-2,∴tanα=3.
(Ⅱ)设β∈(0,π),且满足$\sqrt{3}$sinβcosβ+cos2β=-$\frac{5}{4}$cos2α,
而 $\sqrt{3}$sinβcosβ+cos2β=$\frac{\sqrt{3}sinβcosβ{+cos}^{2}β}{{sin}^{2}β{+cos}^{2}β}$=$\frac{\sqrt{3}tanβ+1}{{tan}^{2}β+1}$,
-$\frac{5}{4}$cos2α=-$\frac{5}{4}$•$\frac{{cos}^{2}α{-sin}^{2}α}{{cos}^{2}α{+sin}^{2}α}$=-$\frac{5}{4}$•$\frac{1{-tan}^{2}α}{1{+tan}^{2}α}$=-$\frac{5}{4}$•$\frac{1-9}{1+9}$=1,
∴$\frac{\sqrt{3}tanβ+1}{{tan}^{2}β+1}$=1,∴tanβ=$\sqrt{3}$,或tanβ=0(舍去),
∴β=$\frac{π}{3}$.
点评 本题主要考查两角和的正切公式,同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:解答题
| 取到的红球数 | 0 | 1 | 2 |
| 奖励(单位:元) | 5 | 10 | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{9}$ | D. | $\frac{9}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{11}{5}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com