精英家教网 > 高中数学 > 题目详情
16.十进制1039(10)转化为8进制为2017(8).

分析 利用除8求余法,逐次得到相应的余数,倒序排列可得答案.

解答 解:∵1039÷8=129…7;
129÷8=16…1;
16÷8=2…0;
2÷8=0…2;
∴1039(10)=2017(7)
故答案为:2017.

点评 本题考查十进制与其它进制之间的转化,熟练掌握其十进制与其它进制之间的转化法则,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列{an}中,a1=2,an+1=$\sqrt{{a}_{n}}$,则an=${2}^{{2}^{1-n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知各项都为正的等差数列{an}中,a2+a3+a4=15,若a1+2,a3+4,a6+16成等比数列,则a11=(  )
A.22B.21C.20D.19

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知tan($\frac{π}{4}$+α)=-2
(Ⅰ)求tanα
(Ⅱ)设β∈(0,π),且满足$\sqrt{3}$sinβcosβ+cos2β=-$\frac{5}{4}$cos2α,求β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.sin 110° cos40°-cos70°•sin40°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果函数f(x)对任意的实数x,都有f(x)=f(1-x),且当$x≥\frac{1}{2}$时,f(x)=log2(3x-1),那么函数f(x)在[-2,0]的最大值与最小值之差为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{b}$=(-3,4),$\overrightarrow{c}$=(1,-1)并与向量$\overrightarrow{a}$的关系为$\overrightarrow{a}$=$\overrightarrow{b}$+2$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$、$\overrightarrow{a}$+$\overrightarrow{c}$、$\overrightarrow{a}$-$\overrightarrow{c}$的坐标;
(2)求$\overrightarrow{a}$+$\overrightarrow{c}$与$\overrightarrow{a}$-$\overrightarrow{c}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=(3,1)$\overrightarrow{b}$=(-6,k),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则k=(  )
A.-2B.-6C.18D.-18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为(  )
A.0.85B.0.819 2C.0.8D.0.75

查看答案和解析>>

同步练习册答案