精英家教网 > 高中数学 > 题目详情
3.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为(  )
A.0.85B.0.819 2C.0.8D.0.75

分析 根据n次独立重复实验中恰好发生k次的概率乘法公式,分别求得射击4次恰好击中3次的概率、射击4次恰好击中4次的概率,再把这2个概率相加,即得所求.

解答 解:∵该射击运动员射击4次恰好击中3次的概率为${C}_{4}^{3}$•0.83•0.2=$\frac{256}{625}$,
该射击运动员射击4次恰好击中4次的概率为${C}_{4}^{4}$•0.84=$\frac{256}{624}$,
∴该射击运动员射击4次至少击中3次的概率为 $\frac{256}{625}$+$\frac{256}{625}$=$\frac{512}{625}$=0.8192,
故选:B.

点评 本题主要考查n次独立重复实验中恰好发生k次的概率乘法公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.十进制1039(10)转化为8进制为2017(8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.根据如图所示的伪代码,可知输出的S的值是35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在极坐标系中,A为直线3ρcosθ+4ρsinθ+13=0上的动点,B为曲线ρ+2cosθ=0上的动点,则|AB|的最小值为(  )
A.1B.2C.$\frac{11}{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正实数x,y,z满足x+y+z=1,$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$=10,则xyz的最大值为$\frac{4}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n为奇数}\\{{a}_{n}-3n,n为偶数}\end{array}\right.$.
(1)证明:数列{a2n-$\frac{3}{2}$}是等比数列;     
(2)求a2n及a2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.椭圆2x2+y2=6的焦点坐标是(  )
A.(±$\sqrt{3}$,0)B.(0,±$\sqrt{3}$)C.(±3,0)D.(0,±3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(2cosθ,sinθ),$\overrightarrow{b}$=(1,-2).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$的值;
(2)若θ=45°,2$\overrightarrow{a}$-t$\overrightarrow{b}$与$\sqrt{2}$$\overrightarrow{a}$+$\overrightarrow{b}$垂直,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z满足|z-1|=|z-i|,其中i为虚数单位,且z+$\frac{1}{z}$为实数,则z=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$或$-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

查看答案和解析>>

同步练习册答案